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This paper studies a particular type of a linear IV regression model with high-

dimensional endogenous component, called the functional linear instrumental regres-

sion (FLIR). It is shown that identification in this model can be achieved with a

single real-valued instrumental variable under the weak completeness condition. Two

estimators based on the Tikhonov and Galerkin regularizations are studied. We obtain

the non-asymptotic upper bounds on the mean-integrated squared errors and corre-

sponding convergence rates for both estimators. Estimators are simple to implement

and demonstrate good small-sample performance in Monte Carlo experiments.

1 Introduction

Consider the scalar dependent variable Yi which depends on the random function, Zi = (Zi(t))t∈T ,

where the set T represents time, age, location, or some other dimension,

Yi =

∫
T
β(t)Zi(t)dt+ Ui, E[Ui|Zi] = 0, i = 1, . . . , n. (1)

The model specifies the linear conditional mean function

E[Yi|Zi] =

∫
T
β(t)Zi(t)dt,

where the slope parameter β is a function, which reflects different strength of the effect of the

process Zi(t) at different t ∈ T . The exogeneity assumption, E[Ui|Zi] = 0, however, is not

appropriate in many applications. Florens and Van Bellegem (2015) suggest treating endogeneity

with the functional instrumental variable, which satisfies the unconditional moment restriction.

In this paper, we show that the slope parameter can be identified and consistently estimated with

a single real-valued instrumental variable under the conditional moment restriction, E[Ui|Wi] = 0.

This offers wider range of possible applications, where the only available IV is not functional.
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Our identification strategy relies on the modified version of the completeness property of the

distribution of (Zi,Wi). Even when the slope parameter is identified, its estimation is difficult

because the identifying equation is an example of the linear ill-posed integral equation. To

overcome ill-posedness we introduce two estimators: based on Tikhonov regularization and

orthogonal series decomposition and projection. The appropriate amount of regularization is

controlled by tuning parameters and should balance the bias and the variance of corresponding

estimators in the optimal manner similarly as in nonparametric estimation problems. We obtain

convergence rates of two estimators in the mean-integrated squared error (MISE). The speed

of convergence depends not only on smoothness properties of the function β, but also on the

degree of ill-posedness. It is verified that speed of convergence of the orthogonal series estimator

is optimal from the minimax point for both mildly and severely ill-posed problems. All results

are valid for the i.i.d. data as well as for the time series under the appropriate weak dependence

conditions.

Linear ill-posed problems with estimated integral operators received lots of attention in

econometrics and statistics recently, see Carrasco, Florens, and Renault (2007), Hoffmann

and Reiss (2008). Other examples of such models include the nonparametric instrumental

variables and the deconvolution. Darolles, Fan, Florens, and Renault (2011) introduce Tikhonov

regularization in the nonparametric IV model and obtain convergence rates under the source

condition which quantifies the regularity of the estimated function relatively to the ill-posedness.

Hall and Horowitz (2005) study the mildly ill-posed case and show optimality of obtained rates

in the minimax sense. Chen and Reiss (2011) discuss connections between different sets of

assumptions used in the nonparametric IV literature and obtain minimax rates for the severely

ill-posed case under the very broad set of assumptions.

In the classical deconvolution problem, the density of the noise is known. Johannes et al.

(2009) study the deconvolution problem, when the density of the noise is estimated from the

additional sample, leading to the estimated convolution operator.

The functional linear regression model without endogeneity dates back at least to Cohen and

Jones (1969) who suggest treating the problem with functional principal components. Hall,

Horowitz, et al. (2007) obtain optimal rates for mildly-ill-posed case. Cardot and Johannes

(2010) consider the orthogonal series estimator based on projection. Their set-up allows to

obtain optimal rates for mildly and severely ill-posed problems, estimated derivatives, and the

mean-squared prediction risk. The estimated operator in this class of models is a covariance

operator.

The research on functional data in econometrics is very recent. Besides Florens and Van Bel-

legem (2015), another closely related study is Benatia, Carrasco, and Florens (2015). They

consider the functional linear regression model with functional response and treat endogeneity

with the functional instrumental variable. Another approach to high-dimensional econometric

problems is to assume some sparsity and to use model selection devices, e.g. modifications

of LASSO or Dantzig selector, see Belloni, Chernozhukov, and Hansen (2014), Gautier and

Tsybakov (2014).
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2 Identification

Suppose the relation between the scalar random variable Y and the random function Z =

(Z(t))t∈T is represented by the equation

Y =

∫
T
β(t)Z(t)dt+ U,

where T is a compact subset of R. Alternatively, if we start from the linear model Y = Φ(Z)+U

with some continuous linear functional Φ, then by the Riesz representation theorem, Φ(Z) =

〈β, Z〉L2
T

with unique β.

Let the instrumental variable W has support W ⊂ Rd. The assumption E[UW ] = 0 is

not sufficient to identify the infinite-dimensional object β. Consider the (generalized) Fourier

expansion of β in some orthonormal basis of L2
T , (ϕj)j≥1: β =

∑
k≥1〈ϕk, β〉L2

T
ϕk. The model

is transformed into the linear instrumental variable model with infinitely many endogenous

regressors (〈Z,ϕj〉L2
T

)j≥1 with generalized Fourier coefficients (〈β, ϕj〉L2
T

)j≥1 being parameters

of interest

Y =

∞∑
j=1

〈β, ϕj〉L2
T
〈Z,ϕj〉L2

T
+ U, E[UW ] = 0.

If the function β is regular enough and the basis (ϕj)j≥1 approximates it well, only first m

coefficients are sufficient to represent the function β with a reasonable accuracy. Truncating

the infinite sum, since (〈Z,ϕj〉L2
T

)1≤j≤m are correlated with U , one needs at least m moment

conditions for the identification of m coefficients. The unconditional moment restriction does not

identify β, unless d ≥ m instruments are available.

Strengthening the uncorrelatedness assumption to the mean-independence restriction, E[U |W ] =

0 a.s. with continuously distributed instrumental variable, however, gives us the infinite-number

of moment conditions which can restore the identifying power.

Under suitable integrability conditions, E[U |W ] = 0 leads to

h(w) := E[Y |W = w] =

∫
T
β(t)E[Z(t)|W = w]dt =: (Sβ)(w), (2)

where S : L2
T → L2

W is an integral operator mapping a real square integrable function on T

to another real function on W, square integrable with respect to the law of W . Eq. (2) is an

example of the Fredholm integral equation of type I solving which for β(t) is known to be an

ill-posed problem in most practical settings, Carrasco et al. (2007). The parameter β is identified

when the operator S is injective. Alternatively, the null space of S should consists only from

zero vector. Indeed, if this was not true, then S(β + β̃) = Sβ + Sβ̃ = Sβ,∀β̃ ∈ N (S) and so we

could not distinguish between β + β̃ and β. If S fails to be injective, the point identification is

only possible in the orthogonal complement to the null space. Besides analytical interpretation,

similarly to other models with conditional moment restrictions, the identifiability of β has also a

statistical meaning in terms of the strength of the association between Z and W . We say that the

L2
T -random element Z is linearly complete for W if for all b ∈ L2

T such that E|〈Z, b〉L2
T
| <∞,

we have

E
[
〈Z, b〉L2

T
|W

]
= 0 a.s. =⇒ b = 0 a.e. (3)

The linear completeness property of the distribution of (Z,W ) is necessary and sufficient for

the identification of β. This requirement is actually weaker than the natural generalization of

completeness condition used in the nonparametric IV, Newey and Powell (2003). The natural
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generalization of completeness property to functional setting would also require Eq. (3) to hold

for nonlinear functionals of Z. We make the following assumption on the data-generating process,

to make sure that the model in Eq. (2) is well-defined.

Assumption 1.

1. There exists β such that Sβ = h, i.e., h ∈ R(S), where R(S) is the range of the operator

S.

2. The stochastic process Z is weakly complete for W .

Consider another injective operator

U : L2
W → L2

S

δ 7→ E[δ(W )Ψ(s,W )],

where Ψ(s,W ), s ∈ S is some integrable and measurable instrument function and S is a some

subset of Rd. Applying U to both sides of Eq. (2) gives

g(s) = E[YΨ(s,W )] =

∫
T
β(t)E[Z(t)Ψ(s,W )]dt = (T β)(s), (4)

where g = Uh and T = US is a new operator. It is more convenient to work with Eq. (4), since

it does not involve conditional expectations which are estimated non-parametrically. Therefore,

we get rid of the bandwidth selection problem and the curse of dimensionality.

Example 1. Let δ 7→
∫
W δ(w)Ψ(s, w)dw be some non-singular integral operator with kernel

function Ψ(s, w). For instance if the support of IV is [0, 1], then it is not hard to verify that the

integral operator with Ψ(s, w) = (1 + sw)esw is injective. Injectivity of U requires that Uδ = 0

implies δ = 0. Therefore, the density of the instrument should be bounded away from zero. It

should also be such that δfW ∈ L2
[0,1], ∀δ ∈ L

2
[0,1], which is the case, e.g. when it is continuous

and bounded away from ∞,

Example 2. If Ψ(s,W ) is selected so that

E[U |W ] = 0 a.s. ⇐⇒ E[UΨ(s,W )] = 0, ∀s ∈ S ⊂ Rd, (5)

and so Eq. (2) holds if and only if Eq. (4) holds, the two sets of solutions coincide and we can ensure

the unicity of β satisfying Eq. (4). This problem is also encountered in the consistent specification

testing of the conditional mean function, Bierens (1982) and in the GMM-type estimators that

exploit efficiently all information from conditional moment restrictions, see Dominguez and Lobato

(2004); Lavergne and Patilea (2013). The following instrument functions Ψ enjoy the property

in Eq. (5): 1[W,+∞)(s), exp(is>W ), exp(s>W ), 1/(1 + exp(−s>W )). (Stinchcombe and White,

1998, Corrolary 3.9.) characterize a large set of such functions. Namely, if Ψ(s,W ) = G(s>W )

with G : R→ R being real, analytic, but nonpolynomial, then Eq. (5) holds for any S ⊂ Rd with

positive Lebesgue measure. The class of such functions is very large and includes exponential,

logarithmic, trigonometric functions and logistic CDF as a potential choices for G.
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