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We consider the following simultaneous equations model

(0.1) Y (A− IN ) +

K∑
k=1

X(k)(C(k) + η(k)) +α′ ⊗ 1T + 1′N ⊗ λ+ ε = 0 ,

where Y and (X(k))
K
k=1 are observed random matrices of dimension T×N , ε is an unobserved random

matrix of dimension T ×N of error terms, IN is the N ×N identity matrix, 1T is the T × 1 vector

where all entries are equal to 1, ′ stands for the transpose and ⊗ for the Kronecker product. The

parameters in this model are: A and (Ck)Kk=1 which are N×N matrices, (η(k))
K
k=1 are diagonal N×N

matrices, α and λ which are respectively of dimension N × 1 and T × 1. This is a linear of model of

social interactions. The matrices A and (C(k))
K
k=1 have zeros on the diagonal and account respectively

for the endogenous effects and exogenous or contextual effects. N is the number of individuals in the

network and T is the number of observations of the individuals interacting. Typically T is a number

of time periods.

The matrix A accounts for endogenous social effect while the matrices (C(k))
K
k=1 account for

exogenous social effects. Typical low dimensional parameters of interest in this model are

a =
1

N

N∑
i=1

N∑
j=1

Ai,j

∀k = 1, . . . ,K, c(k) =
1

N

N∑
i=1

N∑
j=1

C(k)i,j , η(k) =
1

N

N∑
i=1

η(k)i,i .

We maintain the assumption that the network is sparse, namely the matrices A and (C(k))
K
k=1

have many zeros but the identity of the zeros is unknown. This implies that the number of true nonzero

parameters is small but because we don’t know their identity the actual number of parameters is very
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large. Because of this, we propose a method that accommodates a large variety of shape restrictions

that are often maintained in the literature.

The parameter α accounts for individual characteristics (observable or not) which are fixed

over time. Like in a panel data model with fixed effects, we will “difference out” the term α′ ⊗ 1T

which could therefore be random and arbitrarily dependent with Y , X, λ, and ε.

The term 1′N ⊗ λ accounts for time varying effects. The vector λ can be of the form λ = Zδ

where Z is a T ×L matrix such that the columns are known functions of time and observed variables

which only vary with time. This second set of variables are typically attributes which are common to

the individuals (e.g., characteristics of a school or similar demographic characteristics). The vector

δ accounts for the so-called correlated effects (see, e.g., Manski (1993)) which can be a parameter of

interest. The vector λ can more generally be of the form λt = f(Zt,U t, t) where the function f is

unknown and U t is a vector of unobservable characteristics which are common to the individuals in

the network. There, U can be arbitrarily correlated with Z, t X, Y , α and ε, and we cannot recover

λ. The presence of 1′N ⊗ λ with unobservable common characteristics also impedes the identification

of the endogenous and exogenous effects. We will therefore also difference out the term 1′N ⊗ λ in

that case.

For these two cases we consider that the errors (εt)
T
t=1 are independent of X but impose the

stronger assumption that (εt,i)t=1,...,T
i=1,...,N

are i.i.d. homoscedastic standard normals to handle the second

case. The propose method estimates this system of simultaneous equations using a simple convex

program and generalizes the STIV estimator of Gautier and Tsybakov (2011). Inference is obtained

by solving simple linear programs and is robust to identification. This is in sharp contrast with NP-

hard methods proposed to estimate directed acyclic graph which precludes simultaneity but do not

include the supplemental interaction term involving the exogenous X matrix (see, e.g., van de Geer

and Bühlmann (2013)).
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[1] Bramoullé, Y., Djebbari, H., and B. Fortin (2009): “Identification of Peer Effects Through Social Networks ”.

Journal of Econometrics, 150, 41–55. Gautier, E., and A. Tsybakov (2011, 2014): “High-dimensional Instrumental

Variables Regression and Confidence Sets”. Preprint arXiv:1105.2454v4.

[2] Manski, C. F. (1993): “Identification of Endogenous Social Effects: The Reflection Problem”. Review of Economic

Studies, 60, 531–542.
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