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Résumé. Tirant profit de l’apprentissage multi-tâche à noyaux, nous proposons une nou-
velle méthodologie non-paramétrique pour estimer et prédire simultanément plusieurs quan-
tiles conditionnels. L’une des particularités de celle-ci est de restreindre considérablement le
phénomène disgracieux de croisement des courbes estimées. De plus, le cadre méthodologique
proposé est accompagné d’une borne de généralisation uniforme et d’un algorithme efficace
d’estimation. Des résultats numériques sur des données réelles de référence garantissent em-
piriquement les améliorations de notre approche quant à l’erreur de prédiction et à l’apparition
de croisements de courbes.

Mots-clés. Noyau à valeurs opérateurs, estimation non-paramétrique, apprentissage multi-
tâche, apprentissage statistique, descente par coordonnées.

Abstract. Building upon kernel-based multi-task learning, a novel methodology for esti-
mating and predicting simultaneously several conditional quantiles is proposed. We particularly
focus on curbing the embarrassing phenomenon of quantile crossing. Moreover, this framework
comes along with a uniform convergence bound and an efficient coordinate descent learning al-
gorithm. Numerical experiments on benchmark datasets highlight the enhancements of our
approach regarding the prediction error and the crossing occurrences.

Keywords. Operator-valued kernel, non-parametric estimation, multi-task learning, statis-
tical learning, coordinate descent.

1 Introduction
Given a couple (X, Y ) of random variables, where Y takes scalar continuous values, a common
aim in statistics and machine learning is to estimate the conditional expectation E [Y | X = x] as
a function of x. In the previous setting, called regression, one assumes that the main information
in Y is a scalar value corrupted by a centered noise. However, in some applications such as
econometrics, social sciences and ecology, Y may carry a structural information, represented by
its conditional distribution. Such a scenario raises the will to know more than the expectation of
the distribution and for instance, expectiles and quantiles are different quantities able to achieve
this goal.

This paper deals with this last setting, called (conditional) quantile regression. This topic
has been championed by Koenker and Bassett [18] as the minimization of the pinball loss (see
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[17] for an extensive presentation) and brought to the attention of the machine learning com-
munity by Takeuchi et al. [27], Rosset [25]. Ever since then, several studies have built upon
this framework and the most recent ones include a definition of multivariate quantiles (when
Y is a random vector) and the corresponding framework for multiple-output quantile regres-
sion (where we are interested in a single quantile level) [11, 10, 12]. On the contrary, we
are interested in estimating and predicting simultaneously several quantiles of a scalar-valued
random variable Y |X , what is called joint quantile regression. For this purpose, we focus on
non-parametric hypotheses from a vector-valued Reproducing Kernel Hilbert Space (RKHS).

Since quantiles of a distribution are closely related, joint quantile regression is subsumed un-
der the field of multi-task learning [13, 9, 2, 7]. As a consequence, vector-valued kernel methods
[21] are appropriate for such a task. They have already been used for various applications, such
as image colorization [22], classification [8, 24], manifold regularization [23, 5], vector autore-
gression [19], functional regression [14, 15] and structured regression [6]. Quantile regression
is a new opportunity for vector-valued RKHSs to perform in a multi-task problem, along with a
loss that is different from the `2 cost predominantly used in the previous references.

In addition, such a framework offers a novel way to deal with an embarrassing phenomenon:
often, estimated quantiles cross, thus violating the basic principle that the cumulative distribu-
tion function should be monotonically non-decreasing. The method proposed in this paper can
curb that phenomenon while preserving the so called quantile property. This one guarantees
that the ratio of observations lying below a predicted quantile is bounded by the quantile level
of interest. The quantile property may not be satisfied if, for instance, hard non-crossing con-
straints are enforced during the estimation [27].

In a nutshell, this work provides the following contributions (reflecting the outline of the
paper): i) a novel methodology for joint quantile regression, that is based on vector-valued
RKHSs; ii) enhanced predictions thanks to a multi-task approach along with limited appearance
of crossing curves; iii) a uniform bound regarding the generalization of the model, which is, as
far as we know, the first such result based on the Rademacher average for kernelized hypothesis
spaces; iv) an efficient coordinate descent algorithm (the description of which has been omitted
due to a lack of space). Besides these novelties, the enhancements of the proposed method and
the efficiency of our learning algorithm are supported by numerical experiments on benchmark
datasets.

2 Quantile estimation
Let Y ⊂ R be a compact set, X be an arbitrary input space and (X, Y ) ∈ X × Y a pair
of random variables following an unknown joint distribution. Given a vector τ ∈ (0, 1)p of
quantile levels, the paradigm is to estimate the vector-valued function of conditional quantiles
x ∈ X 7→ (µτ1(x), . . . , µτp(x)) ∈ Rp, where µτj(x) = min{µ ∈ R : P (Y ≤ µ | X = x) =
τj}.

Suppose we are provided with an independent and identically distributed (iid) sample of

2



observations {(xi, yi)}ni=1 and a matrix-valued kernelK : X ×X → L(Rp), where L(Rp) is the
set of linear and bounded operators from Rp to itself [26, 21], and letKK ⊂ (Rp)X be the RKHS
associated to K (with a norm denoted ‖·‖K). Extending the work [17, 27] (regarding single
quantile estimation), conditional quantiles can be estimated by minimization of the empirical
risk within a classH = {f + b : f ∈ KK , ‖f‖K ≤ c, b ∈ Rp} (with c > 0) of functions:

minimize
h∈H

Remp(h) =
1

n

n∑
i=1

`τ (yi1− h(xi)), (1)

where 1 stands for the all-ones vector and the pinball loss `τ is defined for all r ∈ Rp by:

`τ (r) =

p∑
j=1

{
τjrj if rj ≥ 0,
(τj − 1)rj if rj < 0.

Using such a loss arose from the observation that the location parameter µ that minimizes
the `1-loss

∑n
i=1 |yi−µ| is an estimator of the median [18]. In addition, one can show that joint

conditional quantiles are minimizers of the true risk: R : h ∈ (Rp)X 7→ E [`τ (Y 1− h(X))] . To
this point, let us remark that the choice of the kernelK is critical, since it controls both the data-
dependent part of the hypothesis f ∈ KK and the way the estimation procedure is regularized
(‖f‖K ≤ c). The forthcoming section illustrates the room for learning a non-homescedastic and
non-crossing quantile regressor by tuning the kernel K.

Now, we state a uniform generalization bound for the model at hand. This result is based
on an extension of the Rademacher complexity to vector-valued hypotheses, which is a stan-
dard technique to obtain uniform bounds for scalar-valued functions [4]. For this purpose, let
((Xi, Yi))1≤i≤n ∈ (X × Y)n be an iid sample and denote R̂n(h) =

1
n

∑n
i=1 `τ (Yi1 − h(Xi)),

the random variable associated to the empirical risk of an hypothesis h.

Theorem 2.1 (Generalization). Let a ∈ R+ such that supy∈Y |y| ≤ a, b ∈ Yp and H =
{f + b : f ∈ KK , ‖f‖K ≤ c} be the class of hypotheses, Assume that there exists κ ≥ 0 such
that: supx∈X tr(K(x,x)) ≤ κ and let δ ∈ (0, 1]. Then:

P

(
sup
h∈H

(
R(h)− R̂n(h)

)
> 2pc

√
κ

n
+ p(2a+ c

√
κ)

√
log(1/δ)

2n

)
≤ δ.

Sketch of proof. Following the technique developed in [4, 16] for real-valued functions, we start
with an extension of the Rademacher complexity to vector-valued functions and prove the so
called composition lemma. Then, we bound the Rademacher average and the pinball loss using
the fact that ∀(f,x) ∈ F × X , ‖f(x)‖`2 ≤ c

√
κ. Finally, we use McDiarmid’s inequality.

In practice, a quantile regressor ĥ = f̂ + b̂ is obtained by maximization of an optimiza-
tion problem dual to (1). Then, Karush-Kuhn-Tucker (KKT) conditions indicate that f̂(·) =∑n

i=1K(·,xi)α̂i, where α̂ ∈ (Rp)n is a solution of the dual problem. Moreover, b̂ can also be
obtained thanks to KKT conditions.
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3 Numerical experiments
Though several candidates are available [20, 1, 3] for the kernel K, we focus on one of the
simplest and most efficiently computable kernels, called decomposable kernel: K : (x,x′) 7→
k(x,x′)B, where k : X × X → R is a scalar-valued kernel and B is a p × p symmetric posi-
tive semi-definite matrix. Since the matrixB encodes the relationship between the components
fj , we set B = (exp(−γ(τi − τj)

2))1≤i,j≤p, where γ ≥ 0. Ranging from 0 to +∞, the pa-
rameter γ offers versatile hypotheses from homoscedastic to heteroscedastic ones. In practice,
γ, as well as c, are chosen by cross-validation (minimizing the pinball loss). Moreover, we

chose k(x,x′) = exp(−‖x−x
′‖2`2

2σ2 ), with σ being the 0.7-quantile of the pairwise distances of the
training data {xi}1≤i≤n. Eventually, quantile levels considered are τ = (0.9, 0.7, 0.5, 0.3, 0.1).

Quantile regression is assessed with two criteria. First, the pinball loss 1
n

∑n
i=1 `τ (yi−h(xi))

is the one minimized to build the proposed estimator. Second, the crossing loss∑p−1
j=1

[
1
n

∑n
i=1 max(0, hj+1(xi)− hj(xi))

]
quantifies how far hj goes below hj+1, while hj is

expected to stay always above hj+1. Moreover, this study is restricted to three non-parametric
models based on the RKHS theory. Other linear and spline-based models have been dismissed
since [27] have already provided a comparison of these ones with kernel methods. First, we
considered an independent estimation of quantile regressors (IND.), which boils down to set-
ting B = I . This can be done out of the vector-valued RKHS theory, considering only scalar-
valued kernels. Second, hard non-crossing constraints on the training data have been imposed
(IND. (NC)), as proposed in [27]. Third, the proposed joint estimator (JOINT) uses the Gaussian
matrixB presented above.

These three methods are compared based on 20 regression datasets, which are the ones used
in [27]. These datasets come from the UCI repository and three R packages: quantreg, alr3 and
MASS. Results are given in Table 1 thanks to the mean and the standard deviation of the test
losses recorded on 10 random splits train-test with ratio 0.7-0.3. The best result of each line is
boldfaced and the bullet indicates that it is significantly different from JOINT or from both IND.
and IND. (NC). All these statements are based on a Wilcoxon signed-rank test with significance
level 0.05.

Regarding the pinball loss, joint quantile regression compares favorably to independent and
hard non-crossing constraint estimations for 13 datasets (5 significantly different). These re-
sults bear out the assumption concerning the relationship between conditional quantiles and the
usefulness of multiple-output methods for quantile regression.

In addition, the results for the crossing loss clearly show that joint regression enables to
weaken the crossing problem, in comparison to independent estimation and hard non-crossing
constraints (13 favorable datasets and 6 significantly different). Note that for the estimation
with hard non-crossing constraints (IND. (NC)), the crossing loss is null on the training data but
is not guaranteed to be null on the test data. In addition, let us remark that model selection (and
particularly for the parameter γ, which tunes the trade-off between hetero and homoscedastic
regressors) has been performed based on the pinball loss only. It seems that, in a way, the
pinball loss embraces the crossing loss as a subcriterion.
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Table 1: Empirical pinball loss (left table) and crossing loss (right table). The less, the better.

DATA SET IND. IND. (NC) JOINT

CAUTION 99.01± 20.72 100.33± 20.54 99.46± 21.82

FTCOLLINSSNOW 152.13± 8.99 151.78± 8.84 151.55± 8.43
HIGHWAY 107.14± 40.97 107.08± 40.97 109.23± 35.24
HEIGHTS 127.93± 2.09 127.93± 2.09 • 127.47± 2.20
SNIFFER 45.29± 5.84 45.17± 5.87 44.92± 5.22
SNOWGEESE 71.27± 32.52 71.19± 32.54 80.25± 26.97
UFC 81.96± 3.76 82.08± 3.71 • 80.54± 3.90
BIRTHWT 139.93± 10.56 139.92± 10.55 139.21± 12.91
CRABS 12.48± 0.83 12.46± 0.85 12.19± 0.68
GAGURINE 62.61± 8.99 62.61± 8.98 62.37± 8.58
GEYSER 108.07± 8.34 108.06± 8.33 108.65± 8.46
GILGAIS 46.42± 4.76 46.25± 4.83 45.67± 5.52
TOPO 67.65± 8.18 66.63± 9.56 70.52± 8.93
BOSTONHOUSING 50.12± 6.14 50.05± 6.13 • 48.97± 5.52
COBARORE • 0.54± 0.62 0.54± 0.62 0.63± 0.62
ENGEL 59.28± 7.18 58.77± 6.32 64.96± 17.62
MCYCLE 83.48± 7.77 83.15± 7.64 • 78.92± 8.43
BIGMAC2003 70.25± 21.11 69.90± 21.59 • 66.24± 19.62
UN3 101.95± 8.26 101.86± 8.21 100.31± 6.97
CPUS 18.83± 15.55 18.81± 15.58 18.73± 15.57

DATA SET IND. IND. (NC) JOINT

CAUTION 0.46± 0.74 0.38± 0.95 0.07± 0.10

FTCOLLINSSNOW 0.00± 0.00 0.00± 0.00 0.00± 0.00
HIGHWAY 10.01± 7.88 9.90± 7.93 9.52± 8.10
HEIGHTS 0.03± 0.05 0.01± 0.02 0.00± 0.00
SNIFFER 0.93± 0.67 0.48± 0.63 0.10± 0.17
SNOWGEESE 2.92± 2.66 2.17± 2.32 1.68± 4.77
UFC 0.22± 0.22 0.33± 0.58 • 0.02± 0.07
BIRTHWT 0.00± 0.00 0.00± 0.00 0.00± 0.00
CRABS 0.47± 0.28 0.40± 0.25 • 0.13± 0.27
GAGURINE 0.06± 0.08 0.05± 0.07 0.05± 0.10
GEYSER 0.60± 1.41 0.60± 1.41 0.82± 1.49
GILGAIS 0.95± 0.27 • 0.69± 0.23 0.89± 0.42
TOPO 1.83± 1.25 0.67± 0.90 1.79± 2.53
BOSTONHOUSING 0.64± 0.20 • 0.47± 0.18 0.62± 0.26
COBARORE 0.10± 0.15 0.10± 0.15 • 0.02± 0.03
ENGEL 0.33± 0.62 0.03± 0.04 0.09± 0.18
MCYCLE 2.77± 2.23 1.30± 1.45 • 0.07± 0.14
BIGMAC2003 2.24± 2.30 1.63± 1.60 1.05± 1.26
UN3 0.85± 0.52 0.67± 0.43 • 0.14± 0.41
CPUS 0.91± 0.34 0.85± 0.33 • 0.15± 0.15
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