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Résumé.
La Complexité se pose dans différents domaines d’applications. Le nombre croissant

de variables et les réponses du système utilisé pour décrire un problème expérimental
limitent l’applicabilité des approches classiques du plan d’expériences (Design of Ex-
periment - DOE) et du plan d’expérience séquentiel (Sequential Experimental Design -
SED). Dans cette situation, plus d’efforts doivent être mis dans lélaboration d’approches
méthodologiques pour les problèmes expérimentaux complexes avec réponses multiples.
Ici, nous allons développer une nouvelle technique de planification d’expériences basée
sur l’incorporation de la notion d’optimalité de Pareto dans le cadre bayésien du plan
d’expériences séquentiel. L’un des aspects essentiels de l’approche impliquera la méthode
de sélection des prochains points du plan d’expériences basés sur les informations actuelles
et les réponses du système choisis. La nouvelle approche séquentielle a été testée sur une
étude de cas simulé.

Mots-clés. Points de mesure optimaux, Optimum de Pareto , Utilité prédictive

Abstract. Complexity arises in different fields of applications. The increasing number
of variables and system responses used to describe an experimental problem limits the
applicability of classical approaches from Design of Experiments (DOE) and Sequential
Experimental Design (SED). In this situation, more effort should be put into developing
methodological approaches for complex multi response experimental problems. In this
work, we will develop a novel design technique based on the incorporation of the Pareto
optimality concept into the Bayesian sequential design framework. One of the crucial
aspects of the approach will involve the selection method of the next design points based
on current information and the chosen system responses. The novel sequential approach
has been tested on a simulated case study.

Keywords. Optimal design points, Pareto optimality, Predictive utility

1 Introduction

Current research and development at both academic and industrial level is tackling the
design and characterisation of sophisticated systems, where the presence of a high num-
ber of factors and variables limits the complete experimental screening towards actual
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optimisation. A possible example is the separation process for recycling waste electrical
and electronic equipments (WEEE) [1], which is characterised by high number of process
operating conditions (i.e. variables) and, often, more than one outcomes (i.e. responses).
In this context, there is the urgent need of novel multi-objective approaches to find op-
timal solution (or a set of optimal solutions), which compromises between two or more
conflicting system responses.

In this work, we propose a Bayesian sequential DOE approach to multi-objective
designs. The novelty resides in the combination of the Bayesian paradigm and the unpro-
cessed multiple responses.

Our approach has been tested in a simulated example related to the optimisation of
electrostatic separation processes in recycling [2], showing promising initial results.

2 The Multi-objective Bayesian Sequential DOE Ap-

proach

2.1 The Multi-objective Optimisation Scheme

In this first attempt to develop a multi-objective Bayesian sequential DOE approach, we
consider a general problem described by k experimental variables, x = (x1, . . . , xk), and
d objective functions, φ = (φ1, . . . , φd), each of which is used to calculate the respective
system response forming the vector y = (y1, . . . , yd). The ultimate aim is to simultane-
ously maximise all the d objective functions, which is not possible in general, so that a
weaker optimality is sought instead: this is the set of all Pareto optimal design points,
whose image in the multi-objective space is called the Pareto front [3]. (A design point x
is called Pareto optimal if no other x∗ exists such that φi(x

∗) ≥ φi(x) for all i). In order
not to not put emphasis on one special objective function, φi, while doing multi-objective
optimization, it is necessary to normalise the system response values. In our example the
system responses lie in the interval [0, 1] so no further action is required.

To begin the optimisation scheme, we randomly select a first initial design matrix X
composed by n design points and evaluate them. We then create the matrix K composed
by the initial design matrix X and the related matrix of system responses Y . At this
step, matrix K has n rows and k+d columns. At this point, we calculate d Bayesian one-
dimensional utility functions (one for each system response) for the whole search space,
based on the marginal predictive distribution of the response conditional on K and we
identify the Pareto front based on the d Bayesian one-dimensional utilities. Among the
points in the Pareto front, we select the next design point as the one with the minimun
Euclidean distance from the utopia point [3] and add it to the matrix K along with the
related vector of system responses. For example, a utopia point can be the ideal point
formed by maximising the response within the Pareto front coordinate-wise. The process
is repeated until a certain stopping criterion is satisfied.
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2.2 The Proposed Bayesian Utility Function

We will refer to U i(xn+1|X) as the i-th component of the multidimensional Bayesian utility
function, where i = 1, . . . , d and xn+1 is the feasible design point in the design space that
may be chosen for the next experimental step.

The use of U i(xn+1|X) has been inspired by the work of Verdinelli and Kadane (1992)
[4].

U i(xn+1|X) =
∫

[α yn+1,i + β ln p(θ|y1:(n+1),i, X,xn+1)]×

×p(yn+1,i, θ|y1:n,i, X,xn+1)dyn+1dθ,

where (y)1:(n+1) collects n + 1 d-dimensional system responses and θ parameterises the
likelihood. Furthermore, α and β are non-negative weights, expressing the relative con-
tribution that the experimenter is willing to attach to the two components of U i. The
number of system responses, d, is not higher than the the dimension of y, which is the
vector of response values. Generally, the posterior distribution of θ depends on all y.

The i-th utility function can be expanded as follows:

U i(xn+1|X) = α
∫

yn+1,i p(yn+1,i, θ|y1:n,i, X,xn+1) dyn+1,i +

+β ln p(θ|y1:(n+1),i, X,xn+1)] ×
× p(yn+1,i, θ|y1:n,i, X,xn+1) dyn+1,i dθ

= α E[yn+1,i|y1:n,i, X,xn+1] +

+ β
∫

ln p(θ|y1:(n+1),i, X,xn+1) ×

× p(yn+1,i, θ|y1:n,i, X,xn+1) dyn+1,i dθ.

The second term is related to the expected gain in Shannon information, obtained
from adding the new design point to X, conditional on y1 : n. The simplest model for
y1:n,i is the following:

y1:n,i = X θi + ε1:n,i, (1)

where θi ∼ N (θ0, σ
2R−1

0 ), σ2 is known and ε1:n,i is a vector of iid N (0, σ2) random
variables.

We know there are d system responses, each with its own U i. However, without loss
of generality, we can consider just one system response in the following steps. We then
obtain:

y1:n = X θ + ε1:n. (2)

Notice that the entries of Y are conditionally independent given θ.
We can now calculate the joint distribution of yn+1 and θ:

p(yn+1, θ|y1:n, X,xn+1) = p(yn+1|θ,xn+1) p(θ|y1:n, X), (3)

3



and
θ|y1:n, X ∼ N{(XTX +R0)

−1 (XTy1:n +R0θ0), σ
2 (XTX +R0)

−1}, (4)

which is the posterior distribution after observing y1:n.
From Eq. 2 and Eq. 4, we obtain the two terms of the utility function. The factor

multiplying β is:∫
ln p(θ|y1:(n+1), X,xn+1) p(yn+1, θ|y1:n, X,xn+1) dyn+1 dθ

= − k

2
ln(2π) − k

2
+

1

2
ln det{σ−2 (x(n+1)x

T
(n+1) + R)},

where R = (XTX +R0).
The predictive mean multiplying α is:

E(yn+1|y1:n) = E(θTxn+1 + εn+1 | y1:n)

= E(θ | y1:n)T xn+1

= [{(XTX) +R0}−1 (XTy1:n +R0θ0)]
T xn+1.

3 Simulated Case Study and Results

Our simulated case study is based on the work of Borrotti et al. (2015) [2]. The problem
consists in separating metal (conductive) and nonmetal particles derived from WEEE
by using the Corona electrostatic separation (CES) process. A typical industrial CES
machine with fixed design parameters depends on the following controllable parameters
(i.e., variables): (i) Electrostatic potential (x1), or voltage, which ranges between -35.000
to -25.000 Volts; (ii) Drum speed (x2), or simply speed, which ranges between 32 to 128
rpm; (iii) Feed rate (x3), which ranges between 0.0028 to 0.028 kilograms per second
(kg/s). As responses of the process we consider the recovery rate of conductive products
(Rc,c) and the grade of conductive products (Gc,c, measuring purity).

From available data, we estimated two multiple regression models, φ1 and φ2, in order
to simulate the responses Rc,c and Gc,c over the whole search space. Given a discretisation
of the domain of the variables x1, x2 and x3, we determined a search space of size 103 and
deploying φ1 and φ2 we calculated the two system responses, from now on ŷ1 and ŷ2.

At this point, it was possible to calculate the real Pareto front of the whole search
space obtaining a Pareto front of size 10. This result has been used to evaluate the
performance of the multi-objective Bayesian sequential DOE approach.

Since we consider a randomly chosen initial design matrix, we computed B = 50
Monte-Carlo runs. The sample size n of the initial design was fixed to 20. A run was
stopped after T = 30 iterations. Furthermore, we set R0 as the identity matrix and σ2

to 1. The values of α and β were varied in order to understand the contribution of the
two terms in the Bayesian utility functions, U i(xn+1|X). In Table 1, the performance
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(α, β) hd enp

(0.00, 1.00) 0.06 (0.03) 1.48 (0.79)
(0.20, 0.80) 0.06 (0.02) 1.70 (1.76)
(0.50, 0.50) 0.01 (0.01) 1.38 (0.87)
(0.80, 0.20) 0.01 (0.01) 2.38 (0.78)
(0.90, 0.10) 0.01 (0.01) 3.80 (1.03)
(1.00, 0.00) 0.01 (0.01) 8.40 (3.32)

Table 1: Average perfomance indicators with Monte-Carlo standard deviation in paren-
theses.

indicators, hypervolume distance (hd) and equal number of points (enp), are reported.
The two indicators are the average values of hd and enp calculated over the 50 Monte-
Carlo runs.

From Table 1, we notice that the larger the value of α the better the performance
of multi-objective Bayesian sequential DOE approach. This behaviour indicates that the
first term of U i(xn+1|X), which is the one devoted to maximising the expected system
responses, is more important than the second term, which is related to the expected gain
in Shannon information [5]. When (α, β) = (1.0, 0.0), we obtain an average equal number
of points close to 8 out of 10 and an average hypervolume indicator close to 0. However,
this behaviour can lead to an early convergence on locally optimal solutions with more
complex search spaces. A compromise between α and β is probably then preferable.

The multi-objective Bayesian sequential DOE approach has shown promising results
but it still needs further improvement. The Bayesian framework should be generalised to
a non-linear setting. Furthermore, other sampling techniques for the initial design need
to be considered and the multi-objective Bayesian sequential DOE approach should be
compared to other methods in order to understand its real power.
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