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Résumé. Les modéles gaussiens graphiques sont des outils utiles pour explorer les
structures des rèseaux multivariées. Cependant, des modèles alternatifs sont nécessaires
quand les données sont fortement non gaussiennes. La t-distribution, obtenue en divisant
chaque composante du vecteur des données par une variable aléatoire gamma, est une
généralisation simple pour gérer une telle situation. La t-distribution Dirichlet, introduite
par Finegold et Drton (2013), est obtenue quand la loi des diviseurs est un processus
Dirichlet. Dans cette dernière, sous la condition d’un paramètre de masse partagé, un
processus de Dirichlet est introduit pour chaque observation, de telle sorte que l’on peut
regrouper les composantes de chaque donnée par rapport à leur déviation de la distribution
normale (regroupement de données aberrantes).

Dans ce travail nous considérons une classe plus générale de distributions non paramétriques,
la classe des mesures complétement alèatoires normalisées (NCRM), qui permet un re-
groupement des composantes plus flexible. De plus, pour emprunter plus d’informations
parmi les données, on modélise la dépendance parmi les NCRM via une structure hiérarchique
non-paramétrique. Au niveau des données chaque NCRM est centrée sur la même mesure
de base, qui est elle-même une NCRM. La nature discréte de la mesure de base partagée
implique que les processus au niveau des données partagent les mêmes atomes. Cette
caractéristique souhaitée permet de regrouper ensemble des composantes de différentes
données.

En guise d’illustration, nous décrirons des applications de notre modèle pour simuler
des donnés multivariées. De plus, pour estimer la dépendance entre les mesures d’un
indice acoustiques prises à différents niveaux de fréquence, nous utiliserons des données
provenant de l’étude de l’isolation sonore d’une façade.

Mots-clés. Modéles graphiques, inférence bayésienne non paramétrique, modéles,
t-distribution.

Abstract. Useful tools for exploring multivariate network structures are Gaussian
graphical models. However, alternative models are needed when data are strongly non-
Gaussian. The t-distribution, obtained by dividing each component of the data vector
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by a gamma random variable, is the straightforward generalisation to accommodate such
issue. The Dirichlet t-distribution, introduced by Finegold and Drton (2014), is obtained
when the law of the divisors is the Dirichlet process. In the latter, conditionally to a
shared mass parameter, a Dirichlet process is introduced for every observation, so that
one can cluster the components of each data point according to their deviation from the
Normal distribution (outlier clustering).

In this work, we consider a more general class of nonparametric distributions, namely
the class of normalised completely random measures (NCRM), which yields a more flexible
component clustering. Moreover, in order to borrow more information across the data, we
model the dependence among the NCRM through a nonparametric hierarchical structure.
At data level each NCRM is centered on the same base measure, which is a NCRM itself.
The discreteness of the shared base measure implies that the processes at data level share
the same atoms. This desired feature allows to cluster together components of different
data.

For illustrative purposes, we will describe applications of our model to simulated mul-
tivariate data. Moreover, in order to estimate the dependence between measurements of
an acoustic index taken at different levels of frequency, we will use data from a façade
sound insulation study.

Keywords. Graphical models, Bayesian nonparametric inference, inference, hierar-
chical models, t-distribution.

1 Graphical Models

Graphical models provide useful tools to study multivariate network structures. In the
following, first we define mathematically undirected graphs, then we mention in which
sense they identify the dependency structure in a multivariate Gaussian vector.

An undirected graph is a pair G = (V,E), where V = {1, . . . , p} denotes the set of
vertices and E ⊂ V × V is the set of edges (also called adjacency matrix). The pair of
vertices (i, j) belongs to the graph G if Eij = 1, and Eij = 0 otherwise. In an undirected
graph Eij = 0, for i = j.

In this work, for computational reasons, we restrict the analysis to the class of decom-
posable undirected graphs (see Lauritzen, 1996).

Let Y ∈ Rp be the population variable and assume it being normally distributed with
mean vector µ and non-singular symmetric positive-definite covariance matrix Σ, i.e.,
Y ∼ Np(µ,Σ). It is well known that the precision matrix Σ−1 = Ω = (ωij)i,j=1,...,p is such
that ωij = 0 if and only if the two components Yi and Yj of Y are, conditionally to the rest
of the data vector, independent. Dempster (1972) firstly introduced a covariance selection
model where the adjacency matrix E of an undirected graph G is used to describe the
structure of the precision matrix Ω of a multivariate normal variate Y . In a nutshell, the
undirected graph G identifies the network dependency structure so that ωij is equal to
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zero for all pairs (i, j) /∈ E.
The precision matrix Ω belongs to M(G), the set of all symmetric positive-definite ma-

trices satisfying the graph structure in E. Dawid and Lauritzen (1993) firstly attempted
a Bayesian analysis of the covariance selection problem, by introducing a suitable prior
for the covariance matrix Σ such that Ω ∈ M(G). They named such distribution Hyper
Inverse Wishart, in short:

Σ ∼ HIWG(b,D),

where b and D represent the degrees of freedom and the location matrix, respectively.
We are now ready to write down the standard graphical model in Bayesian parametric

setting (see Giudici and Green, 1999):

Y1, . . . ,Yn|µ,Σ, G
iid∼ Np(µ,Σ)

µ|Σ, G ∼ Np(µ0,Σ/n0) (1)

Σ|G ∼ HIWG(b,D)

G ∼ π(G).

The last ingredient to fully specify the model is the prior for the undirected decomposable
graph G, π(G). Giudici and Green (1999) proposed a uniform prior over the set of
decomposable graphs of dimension p, and firstly introduced a reversible jump MCMC
algorithm to perform posterior inference under the parametric model 1. For a review of
possible prior choices for G, we refer to Armstrong et al. (2009).

2 Robust Bayesian Graphical Modeling

In their recent works, Finegold and Drton (2013, 2014), consider data that are strongly
non-normal, and propose an alternative approach for network inference in both Bayesian
and classical setting. Shortly, their model for the population variable Y ∈ Rp can be
described as follows:

Yj = µj +
Xj√
τj

j = 1, . . . , p; X = (X1, . . . , Xp) ∼ N(0,Σ).

Where three cases are considered. Let P0 = gamma(ν/2, ν/2)

1. τ1 = τ2 = · · · = τp, τ1 ∼ P0. Y ∼ tp,ν(µ,Σ) multivariate t-distribution;

2. τ1, τ2, . . . , τp
i.i.d.∼ P0. Y ∼ t∗p,ν(µ,Σ) alternative t-distribution;

3. τ1, τ2, . . . , τp|P
i.i.d.∼ P , P ∼ DP(κ, P0). Y ∼ tκp,ν(µ,Σ) Dirichlet t-model.
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Here, DP stands for the Dirichlet Process with mass parameter κ and centering measure
P0 (Ferguson, 1973).

At date, the literature of Bayesian nonparametric graphical models is not abundant.
Here we mention the work of Rodriguez et al. (2011) , where they address the situation of
data coming from heterogeneous populations. Interestingly, in the work of Finegold and
Drton (2014), a nonparametric approach is used to explore models lying between the two
extreme cases of the multivariate and alternative t-distributions.

3 Background on normalized completely random mea-

sures

The class of normalized completely random measures (NCRM) is a wide class of al-
most sure discrete random probability measures recently introduced in the literature
by Regazzini et al. (2003), with the name of normalized random measures with inde-
pendent increments. This class has been extensively studied in recent years and it has
proven to be an effective building block in nonparametric mixture models (see for instance
Argiento et al. 2015). It is well known that a NCRM P can be represented as

P =
+∞∑
i=1

ξiδτi =
+∞∑
i=1

Ji
T
δτi (2)

where ξi := Ji/T , (Ji)i are the points of a Poisson process on R+ with mean intensity
ρ(s)ds and T =

∑
i Ji. The random variables τi are independent from {Ji}, and τi’s are

i.i.d. from P0. The function ρ(·) is called Levy intensity of the process, and it characterizes
its distribution and must satisfy the regularity conditions∫ +∞

0

min{1, s}ρ(s)ds <∞ and

∫ +∞

0

ρ(s)ds = +∞, (3)

so that the normalization is well defined, since P(0 < T < +∞) = 1. A remarkable family
of NCRM is the class of normalized generalized gamma processes, obtained when

ρ(s) = (κ/Γ(1− σ)s−1−σe−sI(0,+∞)(s)ds.

We write P ∼ NGG(σ, κ, P0), where (σ, κ, P0) are the parameters of the NGG-process
(see Argiento et al. 2010) for more details. This class encompasses the Dirichlet processes
when σ = 0 and κ > 0. On the other hand, when σ = 1/2, P reduces to the normalized
inverse-Gaussian process (see Argiento et al. 2009).

One of the main arguments in favour of NCRM’s and in particular of the NGG pro-
cesses, when compared with DP’s, is a higher flexibility in clustering. For instance, when
considering a sample of size n from a NGG process, the distribution of the number Kn of
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distinct values in the sample has a further degree of freedom, σ, which tunes its variance,
unlike the DP case where the distribution of Kn can be highly peaked. The parameter σ
also drives a richer reinforcement mechanism in the predictive distributions of the sample.
Moreover, NGG processes are of Gibbs-type, a class of random probabilities which stands
out for their mathematical tractability, see De Blasi et al. (2015).

4 A Hierarchical NGG Model

In this work we are going to consider the following hierarchical model:

Y1, . . . ,Yn|(τi),µ,Σ, G
ind.∼ Np (µ, diag(1/

√
τi) · Σ · diag(1/

√
τi))

(τij|Pi)
i.i.d.∼ Pi, j = 1, . . . , p

(Pi)|P
i.i.d.∼ P, P ∼ NGG(σ, κ, P )

P ∼ NGG(σ0, κ0, P0), P0 = gamma(ν/2, ν/2)

µ ∼ Np(0, σ
2
µIp), Σ ∼ HIWG(b,D), G ∼ π(G).

This is a generalization of the Dirichlet t-distribution in two directions. Firstly, for each
data point (i.e., for each i = 1, . . . , n) we model the divisors τij, i = 1, . . . , p as a random
sample from a NGG process, so that clustering between the component of the jth sample
is more flexible. Secondly, in order to borrow more information across the data, we model
the dependence among the NGG’s through a nonparametric hierarchical structure. At
data level each NGG is centered on the same base measure, which is a NGG itself. The
discreteness of the shared base measure implies that the processes at data level share the
same atoms.

5 Application

The data considered in this work consist of forty measurements of an acoustic index,
measuring the sound insulation of a residential building. Each measurement is a vec-
tor of observed values at 21 one-third/octave frequency bands. It is well known that
measurements are more variable at low frequencies. Nevertheless, previous studies have
shown that correlation between higher and lower frequencies exists. Our model is capable
of identifying different frequencies according to the divisors τi, while at the same time
recovering the network structure via the estimation of the graph G.
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