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Résumé. Pour de nombreuses applications de recherche ou de recherche opérationnelle,
telles que par exemple la gestion des ressources en eau, la prévision d’événements extrêmes
tels que les inondations ou les sécheresses, la prévision des débits et l’analyse de la vari-
abilité du climat, il est nécessaire de travailler avec des séries chronologiques fiables. Par
ailleurs, pour l’étude des phénomènes extrêmes, disposer de longues séries complètes est
un plus indéniable. Nous présentons dans ce travail une technique efficace pour la recon-
struction des données manquantes de débits journaliers, dans un contexte où les données
de débits journaliers sont les seules à disposition. La méthode proposée repose essen-
tiellement sur la combinaison de modèles de régression linéaire multiple à des modèles à
moyenne mobile autorégressifs intégrés (ARIMA). Plus spécifiquement, elle fait appel aux
modèles de type régression dynamique. Plus précisément, l’approche proposée exploite
les corrélations linéaires entre stations voisines, puis ajuste les résidus par un processus
ARIMA. Cette approche est flexible est appliquée aux données de débits journaliers du
bassin versant de la Durance (France). Par ailleurs, une étude à base de simulations
est présentée, afin d’illustrer l’efficacité de l’approche proposée pour la reconstructione
données manquantes.

Mots-clés. imputation, débit, ARIMA, modèle de régression dynamique, bassin ver-
sant de la Durance

Abstract. Numerous research and operational applications, such as water resources
management, extreme flood or drought predetermination, streamflow forecast and cli-
mate variability analysis, require reliable time series. Since extreme events are seldom by
definition, long and continuous time series are necessary. In this work we introduce an
effective technique for reconstructing missing daily discharge data when one has access
to only daily streamflow data. The proposed procedure uses a combination of regression
and autoregressive integrated moving average models (ARIMA) called dynamic regres-
sion model. It uses the linear relationship between neighbor and correlated stations and
then adjusts the residual term by fitting an ARIMA structure. This technique has a very
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general formulation, making possible the imputation for a wide range of situations. Ap-
plication of the model to daily streamflow data for the Durance river watershed (France)
showed that the model yields reliable estimates for the missing data in the time series.
These results were further confirmed by simulation studies.

Keywords. imputation, streamflow, ARIMA, dynamic regression models, Durance
watershed

1 Introduction

The reconstruction of missing streamflow data is a problem studied from decades ago and,
even nowadays, it continues to be a challenge. There are several methods reported in the
literature, among these, Wallis et al. (1991), that discuss infilling approaches for daily
data using data from the nearby station(s), Woodhouse et al. (2006) that recommend
the use of regression analysis for reconstructing the missing data, or more recent studies
present approaches that involve artificial neural networks as detailed in Coulibaly and
Baldwin (2005).

In this study we use the dynamic regression models (DRMs) to estimate the missing
streamflow data. The DRM estimates an output variable based on one or multiple input
variables and also adjusts the correlation from the remainder part (residuals) by fitting
an autoregressive integrated moving average (ARIMA) structure.

This approach was used before, among others, by Greenhouse et al.(1987) to fit bi-
ological rhythm data, Miaou (1990) to estimate the water demand in some states from
USA, or, more recently, by Bercu and Proia (2013) to forecast energy consumption.

2 Statistical modeling: theory and methodology

A dynamic regression model states how a response variable (Yt) is related to present and
past values of one or more explanatory variables (Xt,1, ..., Xt,l). Besides this, it allows
for the residual term of the regression (i.e., the difference between observations and the
estimates of the regression part of the model) to be modeled with a seasonal autoregressive
integrated moving average (SARIMA) model.

A SARIMA model is an extension of the well-known ARIMA model that addresses
seasonality. Therefore, apart from the relationships between observations of successive
periods, SARIMA incorporates the relationships between observations at certain period
distance, for example a week, a quarter, etc. (seasonal part). A short notation for this
model is SARIMA(p, d, q)(P,D,Q)s.

The general dynamic regression model formulation, in terms of the backshift operator
B (defined as BiYt = Yt−i), with l explanatory variables and a SARIMA(p, d, q)(P,D,Q)s
model for the residuals, is

Yt = β0 + α1(B)Xt,1 + ...+ αl(B)Xt,l + Zt (1)
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where the residual term Zt is expressed as

φ(B)φs(B
s)∇d∇D

s Zt = θ(B)θs(B
s)et (2)

The polynomials αi(B) in (1) represent how Yt reacts over a time period to a change

in Xt,i. They are called so far transfer functions and are defined as αi(B) = ωi(B)
δi(B)

Bbi .

Thus, the transfer functions have three orders, mi and ri (orders of the polynomial ωi(B)
and δi(B)), and bi, that must be set.

In the formulation (2) we have the polynomials of the SARIMA model for the non-
seasonal part (φ(B), θ(B) with orders p and q) and seasonal part (φs(B

s),θs(B
s) with

orders P and Q), representing the autoregressive (polynomials φ) and moving average
components (polynomials θ). The operators ∇d and ∇D

s are used in case of non-stationary
series, and they represent the differencing of order d for the non-seasonal part, respectively
the differencing of order D for the seasonal part with s time units per season. Thus,
SARIMA model has seven orders that must be set (p, d, q, P,D,Q, s).

Readers can find an extended theory presentation of this model in Pankratz (1991) or
Box and Jenkins (1976).

A) Initialize Model

B) Estimate
Parameters

D) Identify
New Model

C) White
noise

errors?

FINAL MODEL E) Validation

NOYES

A) Initialize Model

1. Stationarity check using
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2. Choose the number of lags
for the explanatory variables

3. Choose a proxy model for
the residual term (AR(1)/AR(2))

B) Estimate Parameters

using maximum likelihood est.

D) Identify New Model

1. Identify the orders of the
linear transfer function

2. Identify the orders of the
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Figure 1: Schematic representation of the estimation methodology

We illustrate the procedure for the model estimation and validation schematically, see
Figure 1. The first step (step A) is to choose a proxy model for both parts: a multiple
linear regression with a large enough number of lags for each explanatory variable, and
a low-order AR(1)/AR(2) model for the residuals. The estimates of the parameters and
the errors of the initial-proxy model are then analyzed and, if necessary, a new model is
identified and estimated again, until the errors of the selected model are a white noise
process.

The procedure and rules for identifying the new model (step D) requires to find first
the orders of both the linear transfer functions and (S)ARIMA, procedure that can be
find in Pankratz (1991) and Box and Jenkins (1976). Shortly, for the (S)ARIMA models,
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the order identification is done by analyzing the sample autocorrelation and partial au-
tocorrelation coefficients, while for the transfer function one must examine the pattern of
the coefficients for each explanatory variable.

3 Application on the Durance watershed

The method discussed previously is now applied to eight stations of the Durance watershed
(France) for the daily flow measurements of 107 years (1904-2010). For the estimation
of the parameters, we used the longest part of the dataset that has no missing values,
namely a sequence of 22 years (1980-2001). The validation of the models was handled on
three different test sets each containing four years of daily flow data, that is: 1918-1921,
1931-1934 and 2002-2005.

The performance of the models was study by comparing our results with a simpler,
but common method of reconstructing missing meteorological data, the nearest-neighbors
technique (NN), and also with a more complex one, a meteorological data reconstruction
called ANATEM, see Kuentz et al. (2015).

S1 S2 S3 S4 S5 S6 S7 S8

all data & warm season S3 S1,S4 S1,S4 S1,S5 S4,S7 S7,S8 S5,S6,S8 S6,S7

cold season S3 S1,S4 S1,S4 S3 S7 S7,S8 S5,S6,S8 S6,S7

Table 1: The neighbors of each station for all-year data (Jan-Dec), cold season data
(Sep-Feb) and warm season data (Mar-Aug).

Model Identification. After an extended exploratory analysis and preprocessing of
the eight stations data (i.e.,monthly means, correlation and cluster analysis, or multi-
colinearity and stationarity examination), we set the neighbors for each station, so the
explanatory variable in the regression part of our model (see Table 1). As the relation-
ships might slightly change when different subsets were analyzed (all-year data, only the
cold season data, or only the warm season data), we studied all the situations.

Applying the model identification procedure described in the previous section, we
found for each station a range of four models that we further validated. These models are
different in the number of lags considered for the explanatory variables Xt (i.e., 0- or 1-
lag) and in the number of seasons considered, i.e., one season (all the data) or two seasons
(cold and warm). Regarding the SARIMA model-part (models for the residuals), the
results showed that they are the same regardless how many seasons or lags are considered,
excepting two stations that, in fact, presented also a weak weekly seasonality.

Model validation and performance evaluation. The results reveal that, except
some isolated cases (3 out of 24 for NN and 3 out of 24 for ANATEM-RR), our best-model
(best out of the four we validated) performs better in each case. An important aspect
that must be highlighted is that with DRM the efficiency of the models (KGE) is never
lower than 0.72 (1 meaning perfect accuracy), while NN and ANATEM, due to lack of
robustness, reduce up to a level of 0.41 and 0.22, respectively.
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Figure 2: Daily flow estimations vs. observations for period 2002-2005 of the Durance

An illustration of the estimations vs. observations for period 2002-2005 is shown in
Figure 2. We have similar representations for the other two periods.

To further test our models, we study also the case when all or some of the explanatory
variables for one station are missing too (situation often met in our dataset). Therefore,
in order to be able to apply the estimated models, we use for the missing covariates
the weighted values from the correlated-neighbor stations. When all the covariates are
missing, we use the daily mean (mean of the non-missing values for a certain day for that
stations).

The results in this case show that we slightly decrease in performance, but, overall,
the KGE is still above 0.5.

These results were also checked by simulation study. The complete-covariates model
on simulated data shows that we have a very good performance (average KGE above
0.96), and for missing-covariates model we decrease in performance, but the average KGE
remains, mainly, above 0.5.

Finally, the reconstructed series for the eight stations can be seen in Figure 3. The
reconstructions show once more that in case of an infilling using the complete-covariates
model (all covariates are present) the estimations are extremely good (see stations S1,S2,S3,S4).
They slightly decrease in performance when we deal with missing explanatory variables
in the model, see the case of the stations S5,S6,S7,S8.

4 Conclusion

In this study we present a way of reconstructing daily streamflow data by using dynamic
regression. It is an accessible approach and it can handle even large amount of observations
in a short run-time period. Apart from this, our study was performed on a large watershed
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Figure 3: Daily flow Reconstructed series of the eight stations of the Durance watershed

characterized by several hydrological regimes and various data quality issues, so it brings
a solid and complex analysis.
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