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Abstract. We consider a heavy industrial district close to the city of Taranto where
winds from North-West quadrants and lack of precipitations are known to lead to a de-
terioration of urban air quality in terms of PM10 concentrations. In 2012, the Apulia
Government adopted a Regional Air Quality Plan prescribing a reduction of industrial
emissions by 10% every time such meteorological conditions are forecasted 72 hours in ad-
vance. In order to activate the appropriate safety measures, wind prediction is addressed
by the Regional Environmental Protection Agency (ARPA Puglia) using the Weather Re-
search and Forecasting (WRF) atmospheric simulation system. Here we investigate the
ability of the WRF system to properly predict the local wind speed and direction allowing
different performances for unknown weather regimes. Replicate observations of observed
and WRF-predicted wind speed and direction at a relevant point location within the area
of interest are jointly modeled as a multivariate 4-dimensional time series with a finite
number of states (wind regimes) characterized by homogeneous distributional behavior.
Observed and simulated wind data are made of two circular (direction) and two linear
(speed) variables, then the 4-dimensional time series is jointly modeled by a mixture
of projected-skew normal distributions with time-independent states, where the tempo-
ral evolution of the state membership follows a first order Markov process. Parameter
estimates are obtained by a Bayesian MCMC-based method and results provide useful
insights on wind regimes corresponding to different performances of WRF predictions.

Keywords. Environment, Mixture models

1



1 Observed and simulated wind data

We are concerned with the Tamburi neighborhood within the city of Taranto, located less
than 1 Km away from a huge steel plant, downwind with wind directions from the North-
West quadrant. Several PM10 limit value exceedances were recorded in this neighborhood
mostly in presence of extreme wind conditions encouraging the pollutants transport from
the industrial site to the adjacent urban area (Fedele et al., 2014). In 2012, the Apulia
Government adopted a Regional Air Quality Plan prescribing a reduction of emissions
by 10% every time intense winds from the North-West quadrant and lack of precipita-
tion are forecasted 72 hours in advance. The Weather Research and Forecasting (WRF)
atmospheric simulation system (Skamarock et al., 2008) is actually adopted by the local
environmental protection agency (ARPA Puglia) for wind forecasting. Hourly predicted
wind speed and direction data for the whole year 2014 are here compared to correspond-
ing ground data collected at the San Vito air quality monitoring station, located in the
Tamburi neighborhood. As wind direction is a directional variable, notice that observed
and predicted wind direction and speed have the form of a 4-dimensional mixed circular-
linear time series. We propose a modeling framework where the performance of WRF
in predicting wind speed and direction is assessed, considering that atmospheric simula-
tion systems such as WRF show different performances for unknown weather (here wind)
regimes. The special topology of the support of the data complicates their modeling that
implies accounting for cross-correlations between angular and linear measurements and
between observed and simulated data across time and for a finite number of wind regimes
(states). Indeed wind intensities are also typically negatively skewed and directional data
are rarely symmetric.

2 The Projected Skew Normal distribution

As multivariate circular-linear distribution model we consider the projected skew normal
(Mastrantonio, 2015). This distribution is defined constructively, starting from a (2p+q)-
dimensional random vector (W,Y)′ distributed as a multivariate skew normal (Sahu et
al., 2003) with parameters µ = (µw,µy)

′, Σ and diag(02p,λ). Vector W is divided
into p couples each transformed into polar coordinates giving rise to p lengths R and p
angular (or circular) variables Θ. The distribution of the (p + q)-dimensional random
vector (Θ,Y)′ that arises transforming (W,Y)′ is called the (p, q)-variate projected-skew
normal (PSNp,q) and is governed by three parameters: µ, Σ and λ.

One of the features that makes this distribution attractive is that the PSN is really
flexible and it allows to introduce dependence between and within circular and linear
variables. It is also closed under marginalization, i.e. each univariate and multivariate
marginal distribution is still PSN. It follows that the marginal distribution of Y is skew
normal while Θ is projected normal (Wang and Gelfand, 2013). Although a closed form
is not available for the PSN density, introducing the lengths R = {Ri}pi=1 of the polar
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representation and vector D of the stochastic representation of the skew normal (Li, 2005),
the density of (Θ,R,Y,D)′ is given by:

2qφ2p+q((w,y)′|(µw,µy + diag(λ)d)′,Σ)φq(d|0, Iq)
p∏

i=1

Ri (1)

that is more easily handled and we say that (Θ,R,Y,D)′ is distributed as an augmented
projected-skew normal : (Θ,R,Y,D)′ ∼ AugPSNp,q(µ,Σ,λ). The PSN inherits the well
known identification problem from the projected normal, successfully addressed by Mas-
trantonio (2015) in a Bayesian framework by the use of an MCMC parameter estimation
algorithm based on a mixed slice-Gibbs sampling strategy.

Since Y is marginally distributed as a skew normal it is easy to interpret its associated
parameters, while the meaning of those involving circular variables is less straightforward.
However, Bayesian Monte Carlo approximations are obtained for the most relevant fea-
tures of the PSN, such as the circular mean (α), the circular concentration (ζ), the correla-
tion coefficient between circular variables (Fisher, 1996) and the circular-linear correlation
coefficient (Mardia, 1976), thus bypassing the difficulties in parameter interpretability.

3 The Hidden Markov model

The 4-dimensional circular-linear time series is jointly modeled by a mixture of projected-
skew normal distributions with time-independent states, where the temporal evolution
of the state membership follows a first order Markov process, namely a hidden Markov
model (HMM).

At times t = 1, . . . , T , let zt ∈ K ⊂ N be a discrete random variable that represents
the state of the HMM, ψk = (µk,Σk,λk)′ be the set of PNS parameters at state k and
πk = {πkj}j∈K be a vector of probabilities. The HMM is formalized as follows:

f(θ, r,y,d|{zt}Tt=1, {ψk}k∈K) =
T∏
t=1

∏
k∈K

f(θt, rt,yt, dt|ψzt)
I(zt=k), (2)

Θt,Rt,Yt,Dt|ψk ∼ AugPSNp,q(µk,Σk,λk), (3)

zt|zt−1, {πk}k∈K ∼ πzt−1 . (4)

In this work the HMM is estimated within a non-parametric Bayesian framework, rely-
ing on Dirichlet process priors for πk’s, thus leading to the sticky Hierarchical Dirichlet
process-HMM of Fox et al. (2011). This specification allows to estimate the unknown
number of latent states, along with all other model parameters.
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4 Some results

Prior to modeling, circular variables were transformed from degrees to radians and the log
of speed was taken, for both ground and WRF-simulated wind data. Results were back-
transformed to their original units to improve the interpretation of graphical and tabular
displays. Separate models were estimated for the four seasons of year 2014. All mod-
els were estimated considering 400000 iterations, with 300000 for the burn-in phase and
thinning by 20, i.e. taking 5000 samples for inferential purposes. A standard weak infor-
mative prior setting was used, with µk,Σk ∼ NIW (06, 0.001, 15, I6), λk ∼ N2 (02, 100I2)
for PSN parameters. HMM’s allowed to estimate 5 wind regimes for all of the four seasons
with P (K = 5|θ,y) ∼ 1. The five wind regimes were ordered from weakest to strongest,
based on their ground speed HMM posterior means. As a matter of fact, the output of
the model estimation process provides a wealth of information that is hard to exhaus-
tively report in the limited space of a short paper, some highlights are then given in the
following for the summer season. A remarkable bimodality of the wind directions with
peaks around the SE and NW quadrants is shown in fig. 1 together with a strong asim-
metry of the wind speed. Empirical and HMM-estimated marginal distributions (solid
and dashed lines) substantially agree, while WRF-simulated wind speed (fig. 1, right,
grey lines) overestimates ground recordings (black lines). Tab. 1 allows to investigate
the main features of the five detected wind regimes, corresponding to winds blowing from
the NE, W, W, SE and NW quadrants with increasing speed. On average, winds with
higher speed (regimes 4 and 5) show smaller variability for circular variables, i.e. stronger
winds have more focused directions. Concerning forecast verification, given the tendency
of WRF to overestimate wind speed in all regimes, tab. 1 shows a good agreement of
observed and WRF-simulated means for “extreme” regimes 4 and 5, while WRF seems
to have more troubles in forecasting winds with low to intermediate speed. Another as-
sessment of the predictive performance of WRF is given in fig. 2, where regimes 4 and
5 are those associated to higher circular-circular and linear-linear correlations. Observed
circular-linear correlations (regimes 3 and 5) are not reproduced by WRF forecasts that
show some circular-linear correlation for in regime 2. Analogous results are available for
all the four seasons of year 2014, completing the picture of the proposed method in the
context of distributions-oriented wind forecast verification.
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Figure 1: Marginal distributions of wind speed (right) and direction (left) in summer
2014. Black lines represent observed speed and direction, grey lines are WRF-simulated.
Solid lines are smooth approximations of the empirical distribution, dashed lines are
HMM-predicted distributions.
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1 2 3 4 5
αc
k,1 84.871 296.234 307.542 173.961 312.629
αc
k,2 82.766 261.101 176.688 168.684 322.396
ζck,1 0.445 0.885 0.305 0.072 0.086
ζck,2 0.836 0.308 0.695 0.126 0.173
αl
k,1 0.7 2.033 2.337 2.573 3.795
αl
k,2 2.493 7.368 3.065 4.562 5.927
ζ lk,1 0.136 1.605 1.221 0.628 1.981
ζ lk,2 1.524 5.134 2.677 4.129 4.098

Table 1: MC estimates of the means (α) and variances/concentrations (ζ) of observed (1)
and WRF-simulated (2) wind speed (linear l) and direction (circular c) for the 5 estimated
wind regimes in the summer season.

Figure 2: Correlation matrices of observed (1) and WRF-simulated (2) wind speed (eY )
and direction (Θ) computed using circular-circular (Fisher), circular-linear (Mardia) and
linear-linear (Pearson) correlation coefficients for the 5 estimated regimes in the summer
season. The size of the squares is proportional to the absolute value of the correlation,
empty squares indicate negative correlation.
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