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Résumé. Étant donné un échantillon de taille n d’une population constituée d’espèces
dont les proportions sont inconnues, on s’intéresse au tirage d’un (n+ 1)-ème individu, et
plus précisément à la probabilité que cet individu cöıncide avec une espèce déjà observée
avec une fréquence donnée. Ces différentes probabilités sont appelées probabilités de
découverte. Nous montrons qu’en spécifiant une distribution a priori de type Gibbs,
on obtient naturellement des intervalles de crédibilité pour un estimateur bayésien non
paramétrique des probabilités de découverte.

Mots-clés. Intervalles de crédibilité, Probabilité de découverte, Statistique bayésienne
non paramétrique.

Abstract. Given a sample of size n from a population of species with unknown
proportions, a common problem of practical interest consists in making inference on the
probability that the (n + 1)-th draw coincides with a species already observed with a
given frequency. These probabilities are termed discovery probabilities. Under the general
framework of Gibbs-type priors we show how to derive credible intervals for a Bayesian
nonparametric estimator of discovery probabilities.
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1 Introduction

The problem of estimating discovery probabilities is associated to situations where an
experimenter is sampling from a population of individuals (Xi)i≥1 belonging to an (ideally)
infinite number of species (Yi)i≥1 with unknown proportions (qi)i≥1. Given a sample
Xn = (X1, . . . , Xn) interest lies in estimating the probability that the (n + 1)-th draw
coincides with a species with frequency l in Xn, for any l = 0, 1, . . . , n. This probability
is denoted by Dn(l) and commonly referred to as the l-discovery. In terms of the species
proportions qi’s, one has Dn(l) =

∑
i≥1 qi1{l}(Ñi,n), where Ñi,n denotes the frequency

of the species Yi in the sample. See [3] for an up-to-date review on the full range of
statistical approaches, parametric and nonparametric as well as frequentist and Bayesian,
for estimating the l-discovery and related quantities.

A Bayesian nonparametric approach for estimating Dn(l) was proposed in [6] and [4],
and it relies on the randomization of the unknown species proportions qi’s. Specifically,
consider the random probability measure Q =

∑
i≥1 qiδYi , where (qi)i≥1 are nonnegative

random weights such that
∑

i≥1 qi = 1 almost surely, and (Yi)i≥1 are random locations in-
dependent of (qi)i≥1 and independent and identically distributed according to a nonatomic
probability measures ν0 on a space X. Then, it is assumed that

Xi |Q
iid∼ Q i = 1, . . . , n (1)

Q ∼ Q,

for any n ≥ 1, where Q takes on the interpretation of the prior distribution over the un-
known species composition of the population. Under the Bayesian nonparametric model
(1), the estimator of Dn(l) with respect to a squared loss function, say D̂n(l), arises di-
rectly from the predictive distributions characterizing the exchangeable sequence (Xi)i≥1.
Assuming Q in the large class of Gibbs-type priors introduced in [5], we consider in this
paper the problem of deriving credible intervals for the estimator D̂n(l).

Let Xn be a sample from a Gibbs-type random probability measure Q and featuring
Kn = k species X∗1 , . . . , X

∗
Kn

with frequencies (N1,n, . . . , NKn,n) = (n1,n, . . . , nk,n), and
let A0 := X \ {X∗1 , . . . , X∗Kn

} and Al := {X∗i : Ni,n = l}, for any l = 1, . . . , n. Since

D̂n(l) = E[Q(Al) |Xn], the problem of deriving credible intervals for D̂n(l) boils down to
the problem of characterizing the distribution of Q(Al) |Xn, where with a slight abuse
of notation we denote by A |B a random variable whose distribution coincides with the
conditional distribution of A given B. Indeed this distribution takes on the interpretation
of the posterior distribution of Dn(l) with respect to Xn. We present an explicit expression
for En,r(l) := E[(Q(Al))

r |Xn], for any r ≥ 1. Due to the boundedness of the support of
Q(Al) |Xn, the sequence (En,r(l))r≥1 characterizes uniquely the distribution of Q(Al) |Xn

and, in principle, it can be used to obtain an approximate evaluation of it. An illustration
of our results is presented.
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2 Credible intervals for D̂n(l)

We start by recalling the predictive distribution characterizing a Gibbs-type prior. Let
Xn be a sample from a Gibbs-type random probability measure Q and featuring Kn = k
species X∗1 , . . . , X

∗
Kn

with corresponding frequencies (N1,n, . . . , NKn,n) = (n1,n, . . . , nk,n).
According to the celebrated de Finetti’s representation theorem, the sample Xn is part
of an exchangeable sequence (Xi)i≥1 whose distribution has been characterized in [5] as
follows: for any set A in the Borel sigma-algebra of X, one has

P[Xn+1 ∈ A |Xn] =
Vn+1,k+1

Vn,k
ν0(A) +

Vn+1,k

Vn,k

k∑
i=1

(ni,n − σ)δX∗
i
(A) (2)

where σ ∈ [0, 1) and (Vn,k)k≤n,n≥1 are nonnegative weights such that V1,1 = 1 and Vn,k =
(n − σk)Vn+1,k + Vn+1,k+1. The conditional probability (2) is typically referred to as
the predictive distribution of Q. For any a > 0 and nonnegative integer n, let (a)n :=∏

0≤i≤n−1(a + i) with (a)0 := 1. The two parameter Poisson–Dirichlet prior in [7] is an
example of Gibbs-type prior corresponding to the choice Vn,k =

∏
0≤i≤k−1(θ + iσ)/(θ)n,

for any σ ∈ [0, 1) and θ > −σ. We refer to [6] for other examples.
Let Ml,n be the number of species with frequency l in the sample Xn, and ml,n the

corresponding observed value. The predictive distribution of Q plays a fundamental role
in determining the Bayesian nonparametric estimator D̂n(l) of Dn(l), as well as the cor-
responding credible intervals. Indeed, recalling the definition of Al provided in the Intro-
duction, by a direct applications of (2) one obtains the following expressions

En,r(0) = E[(Q(A0))
r |Xn] =

r∑
i=0

(
r

i

)
(−1)i

Vn+i,k
Vn,k

(n− σk)i (3)

and

En,r(l) = E[(Q(Al))
r |Xn] =

Vn+r,k
Vn,k

((l − σ)ml,n)r. (4)

We refer to Theorem 1 in [1] for details. Equations (3) and (4) take on the interpretation of
the r-th moments of the posterior distribution of Dn(0) and Dn(l) respectively, under the
assumption of a Gibbs-type prior. In particular for r = 1, by using the recursion for the
Vn,k’s, the posterior moments (3) and (4) reduce to Vn+1,k+1/Vn,k and (l−σ)ml,nVn+1,k/Vn,k,
respectively, which are the Bayesian nonparametric estimators of the l-discovery.

The distribution ofQ(Al) |Xn is on [0, 1] and, therefore, it is characterized by (En,r(l))r≥1.
The approximation of a distribution given its moments is a longstanding problem which
has been tackled by various approaches such as expansions in polynomial bases, maximum
entropy methods and mixtures of distributions. For instance, the polynomial approach
consists in approximating the density function of Q(Al) |Xn with a linear combination
of orthogonal polynomials, where the coefficients of the combination are determined by

3



equating En,r(l) with the corresponding moments of the approximating density. The
higher the degree of the polynomials, or equivalently the number of moments used, the
more accurate the approximation. The approximating density function of Q(Al) |Xn can
then be used to obtain an approximate evaluation of the credible intervals for D̂n(l). See
[2] for details.

Under the assumption of the two parameter Poisson–Dirichlet prior, moments (3) and
(4) lead to explicit and simple characterizations for the distributions of Q(Al) |Xn. We
refer to [1] for another example of Gibbs-type priors leading to explicit characterizations
of Q(Al) |Xn. In particular, for any a, b > 0 let Ba,b be a random variable distributed
according to a Beta distribution with parameter (a, b). By combining (3) and (4) with
Vn,k =

∏
0≤i≤k−1(θ + iσ)/(θ)n, it can be easily verified that

Q(A0) |Xn
d
= Bθ+σk,n−σk (5)

and

Q(Al) |Xn
d
= B(l−σ)ml,n,n−σk−(l−σ)ml,n

(1−Bθ+σk,n−σk) (6)

d
= B(l−σ)ml,n,θ+n−(l−σ)ml,n

.

According to the distributional identities (5) and (6), credible intervals for the Bayesian
nonparametric estimator D̂n(l) can be determined by performing a numerical (Monte
Carlo) evaluation of appropriate quantiles of the distribution of Q(Al) |Xn. Note that
in the special case of the Beta distribution quantiles can be also determined explicitly
as solutions of a certain class of non-linear ordinary differential equations. See [8] and
references therein for a detailed account on this approach.

3 Illustration

In order to illustrate the introduced methodology we analyze two benchmark Expressed
Sequence Tags (EST) datasets generated by sequencing two Naegleria gruberi comple-
mentary DNA libraries; these are prepared from cells grown under different culture con-
ditions, namely aerobic and anaerobic conditions. The rate of gene discovery depends on
the degree of redundancy of the library from which such sequences are obtained. Cor-
rectly estimating the relative redundancy of such libraries, as well as other quantities such
as the probability of sampling a new or a rarely observed gene, is of great importance
since it allows one to optimize the use of expensive experimental sampling techniques.
The Naegleria gruberi aerobic library consists of n = 959 ESTs with kn = 473 dis-
tinct genes and ml,959 = 346, 57, 19, 12, 9, 5, 4, 2, 4, 5, 4, 1, 1, 1, 1, 1, 1, for l∈{1, 2, . . . , 12} ∪
{16, 17, 18} ∪ {27} ∪ {55}. The Naegleria gruberi anaerobic library consists of n = 969
ESTs with kn = 631 distinct genes and ml,969 = 491, 72, 30, 9, 13, 5, 3, 1, 2, 0, 1, 0, 1, for
l ∈ {1, 2, . . . , 13}. We refer to [9] for a detailed account on the Naegleria gruberi libraries.
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Figure 1: Naegleria gruberi aerobic and anaerobic libraries. Posterior distributions (dashed
curve for aerobic, solid for anaerobic) of discovery probabilities Dn(l), for l ∈ {0, 1, 5}.

As for specifying the parameters σ and θ characterizing the two-parameter Poisson–
Dirichlet prior, we undertake an empirical Bayes approach. In other terms we choose
the values of (σ, θ) that maximize the likelihood function with respect to the sample Xn

featuring Kn = kn and (N1,n, . . . , NKn,n) = (n1,n, . . . , nkn,n). For details, see [6]. This

procedure leads to the estimates σ̂ = 0.669, θ̂ = 46.241 for the Naegleria gruberi aerobic
library, and σ̂ = 0.656, θ̂ = 155.408 for the the Naegleria gruberi anaerobic library.

Table 1: Naegleria gruberi aerobic and anaerobic libraries. For each library and for l = 0, 1, 5, 10,
we report the Bayesian nonparametric estimates of Dn(l) with 95% credible intervals in paren-
theses.

l = 0 l = 1 l = 5 l = 10

Aerobic 0.361 (0.331, 0.391) 0.114 (0.095, 0.134) 0.039 (0.028, 0.052) 0.046 (0.034, 0.060)

Anaerobic 0.509 (0.478, 0.537) 0.148 (0.129, 0.169) 0.050 (0.038, 0.064) 0 (0, 0)

Table 1 summarizes the estimated discovery probabilities D̂n(l), for l ∈ {0, 1, 5, 10}, for
both libraries, together with the associated 95% posterior credible intervals. Notice that
the values of D̂n(10) and corresponding credible interval, for the anaerobic library, reflect
the fact that, since m10,n = 0, the posterior distribution of Dn(10) is degenerate at 0. Sim-
ilarly, Figure 1 compares the posterior distributions of Dn(l), for l = 0, 1, 5, corresponding
to the two DNA libraries.
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