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Résumé. Nous proposons des estimateurs récursifs d'une fonction de distribution à
l'aide de l'algorithme de Robbins-Monro et du polynôme de Bernstein. Nous étudions les
propriétés de ces estimateurs et nous les comparons avec celle de l'estimateur de distribu-
tion de Vitale. Nous montrons qu'avec un choix optimal des paramètres, notre algorithme
domine celui de Vitale en terms d'erreur quadratique moyenne intégrée. Ensuite, nous
con�rmons ces résultats théoriques par des simulations.
Mots clés: Estimation de la distribution; Algorithme d'approximation stochastique;
Polynôme de Bernstein.

Abstract. We propose recursive estimators of a distribution function using Robbins-
Monro algorithm and Bernstein polynomials. We study the properties of these estimators
and compare them with that of the Vitale's distribution estimator. We show that, with
optimal parameters, our proposed estimator dominates the Vitale's estimator in terms
of their Mean Integrated Square Error performance. Then, we con�rm these theoretical
results by simulations.
Key words: Distribution estimation; Stochastic approximation algorithm; Bernstein
polynomial.

1 Introduction

We consider X1, X2, . . . , Xn a sequence of i.i.d random variables having a common un-
known distribution F with associated density f supported on [0, 1]. Using Robbins-
Monro's scheme (see Robbins and Monro (1951)), we construct a stochastic algorithm,
which approximates the function F at a given point x. We de�ne the algorithm to search
the zero of the function h : y 7→ F (x)− y as following : (i) we set F0(x) ∈ R ; (ii) for all
n ≥ 1, we set

Fn(x) = Fn−1(x) + γnWn,
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where Wn is an observation of the function h at the point Fn−1(x). To de�ne Wn, we
follow Vitale (1975) (see also Babu et al. (2002)) and introduce the Bernstein polynomial
of order m > 0 (we assume that m = mn depends on n),

bk(m,x) = Ck
mx

k(1− x)m−k and set Wn =
m∑
k=0

I
{
Xn ≤ k

m

}
bk(m,x)− Fn−1 (x) .

So the recursive estimator of the distribution F at the point x can be written as

Fn(x) = (1− γn)Fn−1(x) + γn

m∑
k=0

I
{
Xn ≤ k

m

}
bk(m,x). (1)

Throughout this paper, we suppose that F0(x) = 0 and we let Πn =
∏n

j=1(1 − γj) and

Zn(x) =
∑m

k=0 I
{
Xn ≤ k

m

}
bk(m,x). Then, it follows from (1) that one can estimate F

recursively at the point x by:

Fn(x) = Πn

n∑
k=1

Π−1
k γkZk(x). (2)

The aim of this paper is to study the properties of the recursive distribution estima-
tor de�ned by the stochastic approximation algorithm (2), and its comparison with the
distribution estimator introduced by Vitale (1975)

F̃n(x) =
1

n

m∑
k=0

F̂n

(
k

m

)
bk(m,x), (3)

where F̂n is the empirical distribution function.
Some theoretical properties of the estimator F̃n have been investigated (see Leblanc
(2012)).

2 Assumptions and Notations

De�nition 1. Let γ ∈ R and (vn)n≥1 be a nonrandom positive sequence. We say that
(vn) ∈ GS(γ) if

lim
n→+∞

n

[
1− vn−1

vn

]
= γ.

This condition was introduced by Galambos and Seneta (1973) to de�ne regularly
varying sequences (see also Bojanic and Seneta (1995)). Typical sequences in GS(γ) are,
for b ∈ R, nγ(log n)b, nγ(log log n)b, and so on.

To obtain the behavior of the estimator de�ned in (2), we make to the following
assumptions :

(A1) F is continuous and admits two continuous and bounded derivatives.

(A2) (γn) ∈ GS(−α),α ∈]1
2
, 1].

(A3) (mn) ∈ GS(a), a ∈]0, 1[.
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(A4) limn→∞(nγn) ∈] min (a, (2α + a)/4) ,∞].

Assumption (A4) on the limit of (nγn) as n goes to in�nity is usual in the framework of
stochastic approximation algorithms.
Throughout this paper we will use the following notations:

Πn =
n∏

j=1

(1− γj), Zn(x) =
m∑
k=0

I
{
Xn ≤ k

m

}
bk(m,x), ξ = lim

n→∞
(nγn)

−1,

b(x) =
x(1− x)f ′(x)

2
, σ2(x) = F (x) [1− F (x)] , V (x) = f(x)[

2x(1− x)

π
]
1
2 .

C1 =

∫ 1

0

σ2(x)dx, C2 =

∫ 1

0

V (x)dx, C3 =

∫ 1

0

b2(x)dx.

3 Main Results

Our �rst result is the following proposition which gives the bias and the variance of Fn.

Proposition 1 (Bias and variance of Fn).
Let Assumptions (A1)− (A4) hold.

1. If 0 < a ≤ 2
3
α, then

E[Fn(x)]− F (x) = m−1
n

1

1− aξ
b(x) + o

(
m−1

n

)
. (4)

If 2
3
α < a < 1, then

E[Fn(x)]− F (x) = o

(√
γnm

−1/2
n

)
.

2. If 2
3
α ≤ a < 1, then

V ar[Fn(x)] = γn
1

2− αξ
σ2(x)− γnm

−1/2
n

2

4− (2α + a)ξ
V (x) + o

(
γnm

−1/2
n

)
. (5)

If α/2 ≤ a < 2
3
α, then

V ar[Fn(x)] = γn
1

2− αξ
σ2(x) + o(γn).

If 0 < a < α/2, then

V ar[Fn(x)] = o
(
m−2

n

)
.

3. If limn→∞(nγn) > max (a, (2α + a)/4), then (4) and (5) hold simultaneously.

The following corollary shows that, for (γn) = (γ0n
−1) with γ0 ∈]0,+∞[, the op-

timal value for the order (mn) depends on γ0 and then the corresponding MISE =∫
R E [Fn (x)− F (x)]2 dx depend also on the order (mn).
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Corollary 1.
Let Assumptions (A1)-(A4) hold. To minimize the MISE of Fn, the stepsize (γn) must
be chosen in GS(−1), limn→∞ nγn = γ0, (mn) must equal to(

22/3 (γ0 − 2/3)−2/3

{
4C3

C2

}2/3

n2/3

)
, (6)

and then

MISE (Fn) = n−1 γ2
0

2γ0 − 1
C1 −

3

4

1

24/3
γ2
0

(γ0 − 2/3)2/3
C

4/3
2

41/3C
1/3
3

n−4/3 + o
(
n

−4/3
)
.

Let us now state the following theorem, which gives the weak convergence rate of the
estimator Fn de�ned in (2).

Theorem 1 (Weak pointwise convergence rate).
Let Assumption (A1)-(A4) hold.

1. If γ
−1/2
n m−1

n → c for some constant c ≥ 0, then

γ−1/2
n (Fn(x)− F (x))

D→ N
(

c

1− aξ
b(x),

1

2− αξ
σ2(x)

)
.

2. If γ
−1/2
n m−1

n → ∞, then

mn(Fn(x)− F (x))
P→ b(x)

1− aξ
,

where
D→ denotes the convergence in distribution, N the Gaussian-distribution and

P→
the convergence in probability.

4 Simulations

The aim of this paragraph is to compare the performance of Vitale's estimator de�ned in
(3) with that of the proposed estimator (2).
When applying Fn one needs to choose two quantities:

• The stepsize (γn) = (γ0n
−1), where γ0 = 2/3 + c, with c ∈]0, 1/3].

• The order (mn) is chosen to be equal to (6).

In order to investigate the comparison between two estimators, we consider two sam-
ples sizes : n = 50 and n = 100, and the beta mixture distribution 0.5B (2.5, 6) +
0.5B (9, 1) (see Table 1). We compute the MISE.

From Tables 1, we conclude that:

• Using an appropriate choice of the stepsize (γn), the MISE of the distribution
estimator de�ned by (2) can be smaller than that of the Vitale's estimator de�ned
in (3).
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Vitale estimator 1 estimator 2 estimator 3 estimator 4
n = 50
MISE 0.002847 0.002527 0.003109 0.003154 0.002993
n = 100
MISE 0.001509 0.001483 0.001684 0.001670 0.001567

Table 1: Quantitative comparison between Vitale's estimator (3) and four estimators;
estimator 1 corresponds to the estimator (2) with (γn) = ([2/3 + 0.02]n−1), estimator 2
corresponds to the estimator (2) with (γn) = ([2/3+0.05]n−1), estimator 3 corresponds to
the estimator (2) with (γn) = ([2/3 + 0.1]n−1), estimator 4 corresponds to the estimator
(2) with (γn) = (n−1). Here we consider the beta mixture distribution 0.5B (2.5, 6) +
0.5B (9, 1), two sample sizes n = 50 and n = 100, and we compute the MISE.
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Figure 1: Qualitative comparison between the estimator F̃n de�ned in (3) and the pro-
posed distribution estimator (2) with stepsize (γn) = ([2/3 + 0.02]n−1), for 500 samples
respectively of size 50 (left panel) and of size 100 (right panel) for the beta mixture
distribution 0.5B (2.5, 6) + 0.5B (9, 1).

• The MISE decreases as the sample size increases.

From Figures 1, we conclude that:

• Our proposal (2) is closer to the true distribution function than that Vitale's esti-
mator (3).
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• When the sample size increases, we get closer estimation of the true distribution.

5 Conlusion

In this paper, we propose an estimator of the distribution function. We compare our
proposed estimator to the Vitale's distribution estimator throught simulations, by plot-
ting �gures and computing the MISE. For all the cases, the MISE of the our proposed
estimator (2) with an appropriate choice of the stepsize (γn) and using the corresponding
order (mn) is smaller than Vitale's estimator introduced in (3). Moreover, the �gures
show that our estimator Fn is closer to the true distribution function than Vitale's es-
timator F̃n. In addition, the proposed estimators have a major advantage is that their
update, from a sample of size n to one of size n+ 1, requires less computations than the
Vitale's estimator.
In conclusion, using the proposed estimators Fn we obtain better results than those given
by the Vitale's distribution estimator. Hence, we plan to work on automatic choice of
the order (mn) through plug-in method and then we can compare the proposed work to
the one given in Slaoui (2014b).
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