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Résumé. Une forme fonctionnelle (fshape) est une surface sur laquelle est définie une
fonction à valeurs réelles. Ce type de données, très courant en imagerie médicale, reste
complexe à analyser d’un point de vue statistique.

Nous étudions ici le problème dit du “recallage fonctionel” (functional matching) entre
deux fshapes. Il s’agit de trouver comment modifier le signal d’une des fshapes pour qu’elle
ressemble le plus possible à l’autre fshape. C’est un problème variationnel qui consiste
à minimiser une fonctionelle contenant un terme d’appariement entre les deux fshapes
ainsi qu’une pénalité sur le signal (une norme L2, H1 ou BV ). Nous présenterons des
exemples numériques pour comparer ces différentes pénalités. Dans ces simulations, le
problème continu est approché par un problème discret. Pour faire le lien entre ces deux
problèmes, nous présenterons un résultat de Γ-convergence démontrant que les solutions
aux problèmes de recallage fonctionel discret convergent bien vers la solution du problème
continu (quand le nombre de points du problème discret augmente).

Mots-clés. Traitement d’images, Grande dimension

Abstract. A functional surface (fshape) is a surface on which a real function is
defined. This type of data is very common in medical imaging but remain challenging to
analyse on a statistical point of view.

We study here the functional matching problem between two fshapes. We want to
find a signal on the source fshape making it as close as possible to the target fshape. This
is a variational problem involving a functional composed of two terms. The first term is
a distance between the fshapes. The second term is a penalty on the modified signal (L2,
H1 or BV norm). We present some numerical simulations to compare the various penalty
term. In the simulations, the continuous problem is approximated by a discrete problem.
We prove a Γ-convergence result for the discrete matching energy towards the continuous-
one. This results implies the convergence of the solution of the discrete problem toward
the continuous one (as the number of point in the discrete problem increases).
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1 Introduction

This work informally presents the results of Charlier, Nardi & Trouvé (2016). No math-
ematical details are given here, the interested reader may find the rigorous framework in
the paper. The aim of this short presentation is to give the statistical audience an idea of
the tools developed to study the geometric and functional variability of textured surfaces.

New developments in non-invasive acquisition techniques such as Magnetic Resonance
Imaging (MRI) or Optical Coherence Tomography (OCT) allow to get this kind of data
usually after a segmentation step. A fshapes (X, f) is simply a smooth surface X ⊂ R3

(possibly with boundary) on which a signal f : X → R is defined. Typical example are
given in Figure 1.

Figure 1: Three examples of fshapes. Left: blood pressure in a heart (courtesy C. Chnafa,
S. Mendez et F. Nicoud, université de Montpellier). Center: thickness of a hippocampus
(courtesy O. Colliot, INRIA). Right: thickness of retina (courtesy M. Suranic, S. Lee, F.
Beg, Simon Fraser University)

In Charlier, Charon & Trouvé (2015), the authors introduce a new framework to study
the matching problem for fshapes. Recall that a fshape (X, f) may be transformed by a
metamorphosis (φ, ζ). A metamorphosis is a deformation with a geometric part given by
a diffeomorphism φ : R3 → R3 and a functional part ζ : X → R. It acts on (X, f) in the
following way :

(φ, ζ) · (X, f) = (φ(X), (f + ζ) ◦ φ−1)

See Figure 2 for an illustration. Various theoretical results are given in Charlier, Charon
& Trouvé (2015). A dicrete framework is also described and a software implementing this
framework has been released (the fshapes toolkit that may be found at: https://github
.com/fshapes/fshapesTk).
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Figure 2: Fshape metamorphosis: geometry and signal change.

2 Functional matching problem

In this work we consider the “functional” matching problem between (X, f) and a target
fshape (Y, g). We consider the following three energies:

E(f) = R(f,X) + V ((X, f), (Y, g)))

where R(f,X) can be defined as

R(f,X) =
1

2
‖f‖2L2(X) (L2-model) ,

R(f,X) =
1

2
‖f‖2H1(X) (H1-model) ,

R(f,X) = ‖f‖BV (X) (BV-model) .

and the attachment term V is defined by using the varifold theory. The L2-model repre-
sents the model introduced in Charlier, Charon & Trouvé (2015).

We are interested here in the minimization problem with fixed geometry. This means
that the optimization is made only with respect to the signal. In other words, the optimal
fshape is supported on the initial surface X. We prove in particular an existence result
for the optimal signal in the case of the BV and H1-model. The existence result for the
L2-model is already proved in Charlier, Charon & Trouvé (2015) Theorem 6.

3 Discrete framework

We define a discrete version of the problem by approximating the surface X by a sequence
of triangulations. The continuous problem can be then approximated by a sequence of
discrete problems defined on some triangulations whose triangles’s diameter goes to zero.
Roughly speaking, smaller is the diameter of the triangles higher is the number of the
vertices and, when the diameter goes to zero, the triangulation converges to the initial
surface (with respect to the Hausdorff distance).
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Concerning the definition of the discrete problems, the main issue is represented by
the choice of the admissible triangulations. In fact, as X may have a boundary, the
triangulation and the surface need not be one-to-one. In this paper, we decided to work
with the class of triangulations that cover the surface and whose surpassing part has small
area (Figure 3)

Figure 3: A surface X with boundary (solid grey) and an admissible triangulation (black
lines).

Following Morvan & Thibert(2004), we point out the suitable properties a sequence
of triangulations should verify to guarantee the convergence of the areas. To this end the
angle between the normal to the triangulations and the respective (in the sense of the
projection on the surface) normal to the surface has to go to zero.

4 Γ-convergence result

We must guarantee that the discrete solution is a ”good” approximation of the continuous
local minimum. This can be proved by the Γ-convergence theory, that is a natural notion of
convergence of functionals allowing to justify the passage from discrete to continuous prob-
lems. In particular, in the case of minimization problems, the Γ-convergence guarantees
also the convergence (in some sense) of the discrete minima towards the continuous-one.
An introduction to the Γ convergence theory may be found in Jerrard & Sternberg(2009).

We prove a Γ-convergence result showing that the minimum of the discrete problem is
close to the minimum of the continuous problem if the diameter of the triangles is small.
The main issue to get such a result arises from the fact that the discrete problems and the
continuous problem are not defined on the same geometric support. Now, in order to get
the Γ-convergence result we need some hypothesis on the triangulations which guarantee
the convergence of the areas. There is in fact a famous example called Schwartz’s lantern
proving that the area of the triangulations described above needs not to converge to the
area of X.

For every penalty (L2, H1, BV ), previous condition on the triangulations allows to
prove the Γ-convergence result for the respective energy.
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This kind of condition is involved in the numerical study of several problems defined
on surfaces (e.g., Laplace-Beltrami operator). Then our result can be useful behind the
matching model for fshapes.

5 Numerical experiments

Finally, we show some numerical examples to compare the different models. These exam-
ples actually point out that the BV -model strongly improves the matching result.
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