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Résumé. On revisite une méthode classique d’évaluation de risque écologique via une
approche bayésienne non paramétrique. Les modèles bayésiens de mélanges infinis perme-
ttent de s’affranchir d’une hypothèse paramétrique classique mais controversée, tout en
conservant la possibilité d’utiliser de petits jeux de données, typiques de l’écotoxicologie.

Mots-clés. Distribution de sensibilité d’espèce, Écotoxicologie, Mesures aléatoires
normalisées, Modèles de mélange, Statistique bayésienne non paramétrique.

Abstract. We revisit a classical method for ecological risk assessment using a Bayesian
nonparametric approach. By resorting to nonparametric mixture models it is possible to
overcome a historically debated parametric assumption while retaining the ability to deal
with small datasets that are typical of ecotoxicology.

Keywords. Bayesian Nonparametrics, Ecotoxicology, Mixture models, Normalized
random measures, Species Sensitivity Distribution.

1 Introduction
Assessing the response of a community of species to an environmental stress is critically
important for ecological risk assessment. Species Sensitivity Distribution (SSD) is one
of the tools routinely used by environmental managers and regulators in most countries
(Australia, China, EU, USA, . . . ). The SSD approach characterises, for a given con-
taminant, the tolerance of all species possibly exposed using information collected on a
sample of species. This information consists of Critical Effect Concentrations (CECs),
a species-specific concentration marking a limit over which the species suffers a critical
level of effect. Examples include: the concentration at which 50% of the tested organisms
died (Lethal Concentration 50% (LC50)), or the concentration which inhibited growth
or reproduction by 50% compared to the control experiment (Effect Concentration 50%
(EC50)). Each CEC is the summary of long and costly bioassay experiments for a sin-
gle species, so they are rarely available in large number. Minimal required sample size in
Europe is 10 (ECHA, 2008), and there is currently a strong push to reduce animal testing.
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To describe the tolerance of all species to be protected, the distribution of the CECs
is estimated from the sample. In practice, a parametric distributional assumption is
often adopted (Forbes and Calow, 2002): the CECs are assumed to follow a log-normal,
log-logistic, triangular or BurrIII distribution.

Once the response of the community is characterised by the distribution, the goal of
risk assessment is to define a safe concentration which will protect all or most of the
species. To avoid infinitely small concentrations, a cut-off value is often chosen as the
safe concentration, typically the Hazardous Concentration for 5% of the Species (HC5),
the 5th percentile of the distribution. The lower bound of the confidence interval on the
HC5 may also be used as the safe concentration, and a safety factor is typically applied a
posteriori.

The lack of justification for the choice of any given parametric distribution sparked
several research directions. First, authors have sought the best parametric distribution
using goodness-of-fit measures for model comparison. The general consensus is that the
best distribution depends on the dataset (Forbes and Calow, 2002). Nonetheless, the log-
normal distribution has become the customary choice, notably because it readily provides
confidence intervals on the HC5. Moreover, model comparison and goodness of fit tests
have low power on small datasets, precluding the emergence of a definite answer. Then,
another research direction consisted in using distribution-free approaches. Those efforts
included using the empirical distribution function, methods based on ranks, and bootstrap
resampling. Wang et al. (2015) proposed a nonparametric kernel density estimation. All
these approaches have in common that they require large sample sizes to function well.
Finally, authors have considered the possibility that the distribution of the CECs might
rather be a mixture of distributions, datasets being an assemblage of several log-normally
distributed subgroups (Craig, 2013). This is more realistic from an ecological point of
view because several factors influence the tolerance of a species to a contaminant such as
the taxonomic group or the mode of action.

Ignorance of the group structure is a strong motivation for a nonparametric approach.
However, the method must remain applicable to small datasets, which suggests trying
to improve on the existing frequentist nonparametric methods. Bayesian nonparametric
(BNP) mixture models offer an interesting solution for both large and small datasets, be-
cause the complexity of the mixture model adapts to the size of the dataset. Moreover, the
low amount of information available in small datasets to estimate the groups parameters
can be complemented via the prior distribution, as some a priori degree of information is
generally available from other species and contaminants (Craig, 2013). Here, we summa-
rize some of the findings of Kon Kam King et al. (2016). The rest of the paper is organised
as follows. In Section 2 we present the BNP model and existing frequentist models for
SSD and explain how to obtain a density estimate. Then in Section 3 we compare the
different methods on a real dataset, illustrating the benefits of the BNP SSD.
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2 Models for SSD
Given that concentrations vary on a wide range, it is common practice to work on
log transformed concentrations. Consider a sample of n log-concentrations denoted by
X = (X1, . . . ,Xn). We propose to carry out density estimation for the SSD based on
sample X by use of nonparametric mixtures. Bayesian nonparametric mixtures were in-
troduced with Dirichlet process mixtures (DPM) which can be generalized by allowing
the mixing distribution to be any discrete nonparametric prior. A large class of such prior
distributions is obtained by normalizing random measures known as completely random
measures. The normalization step, under suitable conditions, gives rise to so-called nor-
malized measures with independent increments (NRMI) as defined by Regazzini et al.
(2003), see also Barrios et al. (2013) for a recent review. An NRMI mixture model is
defined hierarchically as:

Xi|µi,σ
ind∼ k(·|µi,σ), µi|P̃

i.i.d.∼ P̃ , i= 1, . . . ,n, (1)
P̃ ∼ NRMI, σ ∼Ga(aσ, bσ).

where k is a kernel, which we assume parametrized by some θ = (µ,σ) ∈R×R+, and P̃ is
a random probability on R whose distribution is an NRMI. In our model, all clusters have
a common variance. This is easier to fit on a small dataset, because information about
the variance is pooled across clusters. Similar mixture SSD models described in Craig
(2013) also assume common variance. As described in the Introduction, concentrations are
commonly fitted with a log-normal distribution. Our aim is to move from this parametric
model to the nonparametric one in (1). In order to allow comparisons to be made, we
stick to the normal specification for k on the log-concentrations X by letting: k(x|µ,σ) =
N (x|µ,σ). Under this framework, density estimation is carried out by evaluating the
posterior predictive density along the lines of Barrios et al. (2013). To specify the prior,
we choose as mixing random measure the normalized stable process with (i) a stability
parameter γ = 0.4 (ii) a base measure (which corresponds to the mean of the random
measure) P0( ·) =N ( · |ϕ1,ϕ2) with mean ϕ1 and standard deviation ϕ2, hyperparameters
fixed a priori to specify a certain knowledge in the degree of smoothness (iii) a common
variance for all the clusters with a vaguely informative prior distribution Ga(0.5,0.5). For
posterior sampling, we use the R package BNPdensity and the function MixNRMI1 (see
Barrios et al., 2013).

To illustrate the interest of the Bayesian nonparametric SSD, we compare our proposed
BNP model to two commonly used frequentist models: the normal distribution (Aldenberg
and Jaworska, 2000) and the nonparametric Kernel Density Estimate (KDE) recently
proposed by Wang et al. (2015). For both frequentist approaches, the data is assumed to
be iid.

For the purpose of comparing the predictive performance of the model, we resort to
Leave-One-Out (LOO) cross-validation. We compute the LOO for each of the methods as
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LOOi = f̂(Xi |X−i) where f̂(x |X−i) is the density for one of the three methods estimated
from X with Xi left out. The LOOs for the BNP model correspond to the conditional
predictive ordinates (CPOs) (see Barrios et al., 2013).

Finally, the quantity of interest for ecological risk assessment is the HC5, which cor-
responds to the 5th percentile of the SSD distribution. We choose as an estimator the
median of the posterior distribution of the 5th percentile, while the 95% credible bands are
formed by the 2.5% and 97.5% quantiles of the posterior distribution of the 5th percentile.
The 5th percentile of the KDE is obtained by numerical inversion of the cumulative dis-
tribution function, and the confidence intervals using nonparametric bootstrap. The 5th
percentile of the normal SSD and its confidence intervals are obtained following the clas-
sical method of Aldenberg and Jaworska (2000).

3 Application to real data
We apply this model to a selection of contaminants extracted from a large database
collected by National Institute for Public Health and the Environment (RIVM). This
database was prepared, studied and published by Hickey et al. (2012). We only consider
non censored data, censored data being either discarded or transformed. Kon Kam King
et al. (2016) will describe how the method can be adapted to include censored data. Using
a continuous distribution for the CECs implies that the model does not support ties (or,
in other words, observing ties has zero probability). However, ties may appear in the
dataset due to the rounding of concentrations. Hence, we use a small jittering of the
data.

We selected two example datasets: a medium-sized temephos dataset (CAS: 3383-96-8,
mosquito larvicide, 21 species), and a small captan dataset (CAS: 133-06-2, fungicide, 13
species). Datasets for new contaminants are always small, the minimum requirement set
by the European Chemical Agency being 10 species. The datasets can be visualised on the
histograms of Figure 1. These datasets illustrate different features of the three approaches:
when there is a clear multimodality in the data, the BNP SSD is more flexible than the
fixed bandwidth KDE SSD (Figure 1, captan). When the data do not exhibit strong
multimodality, as for temephos, the BNP reduces to the normal SSD model, whereas the
KDE is by construction a mixture of 21 normal components.

One might think to increase the flexibility of the KDE by simply decreasing the band-
width. However, that would also decrease the robustness of the method. On the second
column of Figure 1, the LOO give an indication of the robustness to over-fitting of the
three methods. For captan, they show that the superior flexibility of the BNP SSD com-
pared to the KDE SSD does not come at the expense of robustness, because the median
CPO of the BNP SSD is higher than the other two. In the case of temephos, the median
LOO likelihood estimate of the normal model is very similar to the median CPO for the
BNP SSD, sign that there is little over-fitting. This generally illustrates the fact that
model complexity in a BNP model scales with the amount and structure of the data. On
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the right hand side of Figure 1, the credible intervals of the HC5s for the BNP SSD are
generally larger than the confidence interval of the normal SSD.
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Figure 1: The top panel represents the medium-sized temephos dataset, the bottom
panel represents small-sized captan dataset. Fits of the Normal, KDE and BNP models.

Concentrations are log transformed. Left: Histogram and density estimates. Centre:
Boxplot for the LOO (for Normal and KDE) and the CPO (for BNP) on logarithmic

scale. Right: HC5 and associated confidence/credible intervals.

In conclusion, the BNP SSD seems to perform well when the dataset deviates from
a normal distribution. Its great flexibility is an asset to describe the data, while it does
not seem prone to over-fitting. It can be thought of as an intermediate model between
the single component normal SSD and the KDE with as many components as there are
species. We chose to base the BNP SSD on NRMI rather than on the more common
Dirichlet Process, because it is more robust in case of misspecification in the number of
clusters (Barrios et al., 2013). The BNP SSD provides several benefits for risk assessment:
it is an effective and robust standard model which adapts to many datasets. Moreover,
it readily provides credible intervals. While it is always possible to obtain confidence
intervals for a frequentist method using bootstrap, it can be difficult to stabilise the
interval for small datasets even with a large number of bootstrap samples. As such, the
BNP SSD represents a safe tool to remove one of the arbitrary parametric assumptions
of SSD (Forbes and Calow, 2002).
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Future work to support the BNP SSD will include a comparison of methods on sim-
ulated data, an extension to the case of censored data and an emphasis on the potential
benefits of the approach from a biological point of view.
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