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Résumé. Nous étudions le problème d’estimation de la densité d’un vecteur aléatoire
à partir des observations indépendantes de même loi. Dans certains modèles de régression
linéaires ou non linéaires homoscédastiques, il est bien connu que la densité de la réponse
peut-être estimée à une vitesse paramétrique, en utilisant la représentation de la densité
objectif comme un produit de convolution entre la densité d’une fonctionnelle des covari-
ables et celle du terme d’erreur. Nous considérons des généralisations de ce problème
d’estimation non paramétrique pour des modèles de régression paramétriques condition-
nellement hétéroscédastiques et non nćessairement additifs. Dans ce cas, la densité ob-
jectif est toujours une fonction lisse de la densité d’une transformation des covariables et
de celle des erreurs et peut être estimée à partir d’une U−statistique construite à l’aide
d’un estimateur à noyau de la densité des termes d’erreur. Cette approche demande au
préalable une estimation consistante à la vitesse n−1/2 des coefficients du modèle.

Mots-clés. Convolution, Estimateur à noyau, Modèles non separables, Vitesse de
convergence paramétrique

Abstract. The problem of estimating a multivariate density of some random vector
of interest using independent identically distributed observations is considered. For some
linear or nonlinear homoscedastic models, it is well known that the density of the response
variable could be estimated at the parametric rate. This is achieved using the representa-
tion of the response variable density as a convolution between a functional of the density
of the covariates and the density of the error term. We generalize this nonparametric
estimation setup to heteroscedastic, non necessarily additive regression models. In our
case, the density of interest is still a smooth map of the density of a transformation of
the covariates and of the density of the error term. Thus the density of interest could
be estimated at a parametric rate using a U−statistic built from a kernel estimator of
the error term density. A preliminary n−1/2−consistent estimator of the parameter of the
models is required.
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1 Introduction

Density estimation received a lot of attention in the statistical literature. The nonpara-
metric approaches have been very successful, especially when the estimation procedure
could adapt to the regularity of the density and yields optimal rate estimates. In this pa-
per we consider a broad, possibly nonparametric class of multivariate densities for which
the density could be estimated at a parametric rate. To give a flavor on our approach,
let us denote by Y the random vector with density fY defined on RdY , that we want to
estimate. The vector Y is not necessarily observed, but instead let us suppose that one
observed a random vector X. For the informal insight we want to provide at this stage,
let us assume that X takes values in RdX , it has a density fX , and let fY,X denote the
joint density of Y and X, that for the moment is also assumed to exist. Then, one can
write

fY (y) =

∫
RdX

fY |x(y)fX(x)dx = E
[
fY |X(y)

]
, y ∈ RdY ,

where fY |x stands for the density of Y given that X = x. If the conditional densities
fY |x, x ∈ RdX , does not have any particular structure, in general one proceeds to a local
estimation for each x, and thus the effective sample size is of smaller order than the sample
size. This results in nonparametric rates.

In this paper, we propose a flexible structure that links Y and X and, in some sense,
allows using the whole sample for estimation of the conditional density of Y given the
value of X. This will result in parametric rates for simple density estimates defined by
replacing the expectation with respect to the law of X by a sample mean. The model we
propose include a large set of models studied in the statistical literature.

2 The framework

Let ε be a random vector with values in RdY . Let fε denote the density of ε, that is
supposed to exist. Assume that

ε and X are independent.

Let Y ∈ RdY be the random vector defined by some transformation

Y = T (X, ε).

The map (x, e) 7→ T (x, e) ∈ RdY is such that, for any x ∈ RdX , the function e 7→ T (x, e)
is one-to-one. Let S(x, ·) be the inverse, so that

ε = S(X, Y ).

Assuming that for any x, the application S(x, ·) has continuous partial derivatives of order
1, and the expectations are well-defined, one could write the density of Y under the form

fY (y) = E [|J(X, y)| fε (S(X, y))] , (1)
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where
J(X, y) = det∇yS(X, y)

is the Jacobian matrix. The aim is to estimate fY (y) assuming an independent sample
(Xi, εi), 1 ≤ i ≤ n, from (X, ε), where only the Xi’s are observed.

Concerning the realizations of Y , two cases are allowed: all the Yi’s are available and
none of the Yi’s are available. When the Yi = T (Xi, εi), 1 ≤ i ≤ n, are observed the
inverse transformation S could be some unknown element of a given parametric family of
one-to-one transformations

{Sθ : θ ∈ Θ},

where Θ is the some parameter space, typically subset of Rp. Let θ0 be the unknown
value of the parameter that corresponds to transformation S, i.e. εi = Sθ0(Xi, Yi). Let
Jθ0(X, y) = det∇ySθ0(X, y) be the corresponding Jacobian. When the sample of Y is not
observed, we will necessarily assume that the transformation S is given.

Concerning the density fε, we will not necessarily assume that it is known, and we will
use a kernel estimate to approximate it. This will be possible only when the εi’s could be
estimated from the data, that is when the Yi’s are observed together with the Xi’s.

The framework we consider is quite general and includes many examples of statistical
models, such as Berkson error model, parametric location-scale regression models and
econometric non separable models.

3 The estimators

Inspired by the identity (1), one can define an estimator for the density fY for each of the
four situations where the transformation S is given or not, and the density fε is known
or has to be estimated.

If the transformation S, the Jacobian J and the density fε are given, a simple estimator
of fY (y) would be

f̃Y (y) =
1

n

n∑
i=1

|J(Xi, y)| fε(S(Xi, y)).

Under mild conditions, this estimator converges at the
√
n parametric rate. For instance,

this result is well known in the case of Berkson error model with one-dimensional Y ; see,
for instance, Delaigle (2007).

If the transformation S and the Jacobian J depend on some parameter θ, we could
define the density estimator

f̃Y (y; θ̂) =
1

n

n∑
i=1

∣∣Jθ̂(Xi, y)
∣∣ fε(Sθ̂(Xi, y)),

where θ̂ is some estimator of the true unknown value θ0 of the parameter.
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Next, let us consider the case where fε is unknown. Let us suppose for the moment that
the transformation S and the Jacobian J are given. The idea we propose for building and
estimator of fY is to use a leave-one-out Parzen-Rosenblatt density estimate of fε(S(Xi, y))
based on the sample εj = S(Xj, Yj), j 6= i. More precisely, consider the estimator

f̂Y (y) =
1

n(n− 1)bd

∑
1≤i 6=j≤n

|J(Xi, y)|Kb(S(Xi, y)− S(Xj, Yj)),

with Kb(t) = K(t/b) with K(·) a kernel and b a bandwidth.
Finally, in the case where fε is unknown, and the transformation S and the Jacobian

J are given up to some unknown parameter, we propose the density estimator

f̂Y (y; θ̂) =
1

n(n− 1)bd

∑
1≤i 6=j≤n

∣∣Jθ̂(Xi, y)
∣∣Kb(Sθ̂(Xi, y)− Sθ̂(Xj, Yj)), (2)

where θ̂ is some estimator of θ0. The estimator θ̂ could be build inside the specific model
using standard approaches. A general approach for non separable models was proposed
by Brown & Wegkamp (2002).

4 The results

The problem we consider was investigated, under different assumptions, by Escanciano
& Jacho-Chávez (2012), Müller et al. (2013), Støve & Tjøstheim (2012), Schick & We-
felmeyer (2013), among many others.

The asymptotic behavior of f̃Y (y) follows directly from quite standard results on the
behavior of the U−statistics of order 2. Convergence, uniform convergence with respect to
y in some suitable, and n−1/2−asymptotic normality could be derived. For the estimator
f̂Y (y; θ̂), one has to control the effect induced by the fact that the true εi are not available.
This could be a difficult issue and was usually handled in a regression setup using a suitable
decomposition of the difference f̂Y (y; θ̂)−f̂Y (y; θ0) and i.i.d. representations of the residual
empirical process in the parametric model to control this difference. See Khmaladze and
Koul (2009) for recent reference on such representations of the residual process. We use

a different decomposition of f̂Y (y; θ̂) − f̂Y (y; θ0) and uniform results on the behavior of
U−processes to control this difference. Our approach seems more convenient for studying
multivariate densities. Under suitable conditions, we derive the n−1/2−convergence for
f̂Y (y; θ̂). The uniformity with respect to y is also studied. Next, we derive the asymptotic

normality f̂Y (y; θ̂) and study its efficiency.
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