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Abstract. In this paper we review recent developments in econometric from the point
of view of statistical test theory. We show that some of the recent proposed statistical tests
for the fractional integration parameter ”d” in the context of ARFIMA(p, d, q) models
are fundamentally inappropriate.
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1 Introduction

As the most popular long memory model and a useful extension of the classical ARIMA
models, the fractionally integrated autoregressive moving average (ARFIMA) process
has seen a considerable interest in the past three decades and has been widely applied
in many fields like hydrology, economics and finance. The ARFIMA process, intro-
duced by Granger and Jojeux (1980) and Hosking (1981), generalizes the standard linear
ARIMA(p, d, q) model by permitting to the degree of integration d to be non-integer.
Compared with the standard ARMA and ARIMA specifications, the ARFIMA gen-
eralization provides a more flexible framework in modelling the long range dependence,
where a special role is played by the fractional differencing parameter d whose precise
determination is very important in applied work.

In recent years, an increasing effort has been made to establish reliable testing proce-
dures to determine whether or not an observed time series is fractionally integrated. In
particular, there has been a considerable interest in generalizing the familiar Dickey-Fuller
test by taking into account the fractional integration order. It is well documented that the
power of Dickey-Fuller [DF ] type tests against alternatives of fractional integration is low
(see Sowell (1990); Diebold and Rudebusch (1991); Hassler and Wolters (1994) ; Krämer
(1998)). This motivated the development of powerful tests against fractional alternatives.
Robinson (1991) pioneered an integration test constructed from the Lagrange Multiplier
[LM ] principle, which was proven by Robinson (1994) to be locally the most powerful
under Gaussianity. The test has been further studied and modified by Agiakloglou and
Newbold (1994), Tanaka (1999). Tanaka (1999) showed, through simulation experiments,
that the LM tests have serious size distortion. Another serious criticism addressed to the
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LM tests is that, by working under the null hypothesis, it does yield any direct informa-
tion about the correct long-memory parameter d, when the null is rejected (Candelon, Gil
Alana (2003)). Furthermore, the Lagrange multiplier (LM) test is based on the derivative
of the log-likelihood. For the ARFIMA(p, d, q) model

Φ(B)(1−B)dXt = Θ(B)εt, (1.1)

where εt is white noise, the log-likelihood function can be written as
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Agiaklouglou and Newbold (1994) argues that, differentiating (1.2) with respect to d gives
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In fact, differenciating (1.2) with respect to d gives
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All the ambiguities of the LM test, for fractional integration parameter come from the
derivative (1.3).

More recently, Dolado et al (2002) introduced a fractional integration test (henceforth
DGM test) based on an auxiliary regression for the null of unit root (H0 : d = 1) against
the alternative of fractional integration (H1 : d = d1, d1 < 1). Their proposed test reduces
to the standard Dickey-Fuller test when d1 = 0 while under the null and when d1 known,
the statistic in the corresponding regression model depends on a fractional Brownian
motion if 0 ≤ d1 < 0.5. While the DGM test represents a useful generalization of the
Dickey-Fuller test in the presence of a fractionally integrated alternative, it might give
arbitrary conclusions when the null or the alternative hypotheses are misspecified, i.e.
when the true d is not present neither in the null nor in the alternative. Indeed, through
some simulation experiments we conduct, it may be seen (see Table 1 below) that the
DGM test performs somewhat badly in the case where the parameter d is misspecified.
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2 Fractional Dickey-Fuller testing: the DGM approach

2.1 Hypotheses and the auxiliary regression model

Dolado, Gonzalo, and Mayoral [DGM ] (2002) introduced a test based on an auxiliary
regression for the null of unit root against the alternative of fractional integration. The
fractional Dickey-Fuller (FD−F ) test considered by, in the basic framework, is described
by the following. Let {yt}nt=1 a series generated from the fractionally integrated process (
FI(d) in short) given by

(1−B)dyt = ut, t ∈ Z, (2.1)

where d ∈ R is the true order of integration and, {ut, t ∈ Z} is an iid innovation with
mean zero and variance σ2

u. For the data generating process (DGP ) (2.1), DGM (2002)
propose to test the following hypotheses,

H0 : d = d0 against H1 : d = d1,with d1 < d0, (2.2)

by means of the t statistic of the coefficient of ∆d1yt−1, where ∆ = 1−B, in the ordinary
least squares (OLS) regression

∆d0yt = ρ∆d1yt−1 + εt, (t = 1, · · · , n). (2.3)

2.1.1 Unit root test against fractional alternatives and its asymptotic Prop-
erties

To study the performances of their procedure in terms of power and size, DGM (2002)
consider only the particular case,

H0 : d = 1 against H1 : d = d1, (2.7)

by means of the t-statistic of the coefficient ∆d1yt−1, in the ordinary least squares (OLS)
regression

∆1yt = ρ∆d1yt−1 + ε. (2.8)

The t-ratio, tρ̂(d1), is given by

tρ̂(d1) =

√
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.

The implementation ofDGM (2002) test would require tabulation of the percentiles of the
functional of fractional Brownian motion, which imply that inference on the presence of
unit root would be conditional on d1. But given the well-known difficulties in estimating
the order of fractional integration in finites samples, thus the test might suffer from
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misspecification. Under H0 : d = 1, we have Cov(∆d0yt,∆
d1yt−1) = 0 and under the

alternative we have Cov(∆d0yt,∆
d1yt−1) = σ2

ε(−1 + d1) < 0. Thus DGM build the
decision rule as follows, {

H0 : d = 1 is accepted if ρ = 0
H0 : d = d1 is accepted if ρ < 0

(2.9)

The hypotheses (2.7) based on the regression model (2.8) and the decision rule (2.9) is
called by their authors ”Fractional Dickey and Fuller Test”.

2.1.2 Power and size of DGM’s FDF test.

The test based on the hypotheses (2.7) and regression model (2.8) are useless in practice.
The problem with the DGM type tests is that they are based on a choice of two possible
orders of integration d0 and d1, of which the true order can be different either in the
null or in the alternative. In fact, in the fractional integration case, there is a continuum
of possible orders of integration. This would make the simple-versus-simple hypothesis
invalid, particularly if the auxiliary regression model, used for the test, is based on the
null and alternative. For instance, in the DGM test one of the following three cases holds:

• d = d0,

• d = d1,

• d ̸= d0 and d ̸= d1.

The third case causes serious troubles in practice, particularly, if the statistic of the
test depends on null and alternative hypothesis. When d0 = 1, in the first two cases,
Dolado et al (2002) showed by means of a simulation study that their test procedure has
a good performance in terms of power and level. For the third case, Dolado et al (2002)
studied the effect of hypotheses misspecification by considering the deviations from the
true value d1 with size ±0.1, ±0.2 and ±0.3. In the following; however, we replicate the
simulation results of Dolado et al (2002) and present them more clearly by using a single
table. We generate 1000 series from the data generating process (2.1) with sample size
n = 100. The first column of Table 1 gives the true values of the parameter d while the
second line shows the values of d1 specified under the alternative. The first line gives
the tabulated values by DGM (see Dolado et al [10], table X page 2003). The last
line of Table 1 represents the performance of the DGM test in terms of level, i.e. the
percentage of rejection of the null, when it is true (α), while the main diagonal represents
the performance of the DGM test in terms of power i.e. the percentage of acceptance of
the alternative hypothesis when it is true, (1 − β). α and β are respectively the type I
and the type II errors, defined by

α = P (reject H0|d = 1) and β = P (reject H1|d = d1).
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The other values in the table are the percentage of acceptance of the alternative hypothesis
when both the null and alternative are false i.e. when the value of d is wrongly specified.
In fact, these values represent another type of errors, namely

Pd̸=d1 (Accept H1|d ̸= 1 and d ̸= d1) .

When performing a test one may arrive at the correct decision, or one may commit one
of two errors: rejecting the null hypothesis when it is true (type I error, or error of the
first kind) or accepting it when it is false (type II error or error of the second kind). In
statistical testing theory, there is no place for type III error (or error of the third kind).
This anomaly is the consequence of the choice of inappropriate auxiliary regression model,
which depends on the null and alternative. From Table 1, it may be easily observed that
when the true d is well specified, the DGM test has a good performance in terms of
power and level. However, in the case where the true value of d ∈ [0, 1] − {1, d1}, the
conclusions of the test are somewhat arbitrary. For example, when d = 0.3, the percentage
of acceptance of the alternative is equal 100% regardless of the alternative hypothesis. In
other word, if the process yt, is fractionally integrated of order d = 0.3 (i.e. stationary
stationary process), the table 1, show that for H0 : d = 1 against H1 : d = 0.7, we have

Pd=0.3 (Accept H1 : d = 0.7|d ̸= 1 and d ̸= d1) = 1.

This example shows clearly that the risk to specify the stationary process as a nonsta-
tionary process is high.

The DGM (2002) test presents an analogy with the original Dickey-Fuller test, but
cannot be considered as a generalization of the familiar Dickey-Fuller test in the sense that
the conventional I(1) vs I(0) framework is recovered (for the DGM test the conventional
framework is recovered only if d0 = 1 and d1 = 0).
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