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Résumé. Les modèles à espace d’état (SSMs) sont utilisés dans de nombreux
domaines scientifiques et techniques pour représenter des séries temporelles et/ou
des systèmes dynamiques. Dans ce travail, on revisite l’algorithme d’augmentation
de données de Tanner and Wong (1987) pour l’estimation bayésienne de paramètres
pour les SSMs. On propose l’emploi de méthodes de Monte-Carlo séquentielles
et adaptatives pour améliorer les performances de l’algorithme original. La nou-
velle approche est testée sur un example académique dans l’optique de l ’étendre
à des modèles plus riches (non-linéaires/non-Gaussiens) issus du domaine de la
modélisation de la croissance des plantes.

Mots-clés. Augmentation de données, modèles à espace d’état, méthodes de
Monte Carlo séquentielles, méthodes de Monte-Carlo

Abstract. State space models (SSMs) are successfully used in many areas
of science to describe time series and/or dynamical systems. In this work, we
revisit the data augmentation algorithm introduced by Tanner and Wong (1987)
for bayesian parameter estimation in SSMs. We propose to employ sequential
Monte-Carlo and adaptive Monte-Carlo Markov chain methods to improve the
performance of the algorithm. We provide a first numerical example that allows
us to evaluate the convergence of the posterior estimate to the true posterior
distribution. Our objective is to evaluate the performance of the proposed method
to nonlinear/non-Gaussian models, with a special interest to plant growth models.

Keywords. Data augmentation, state-space models, sequential Monte Carlo
methods, Monte-Carlo methods
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1 Introduction

State space models are one of the most successful statistical modeling ideas that
have came up in the last forty years: the use of latent states makes the model
generic enough to handle a variety of complicated real-world problems, whereas
the relatively simple prior dependence structure (the “Markov” property) still al-
lows for the use of efficient computational procedures. A state space model consists
of two equations: the transition equation and the observation (or measurement)
equation which are respectively given by

xt+1 = ft(xt, ηt), (1)

yt = ht(xt, εt). (2)

It is assumed that the distributions of the state variable and observations admit
density functions with respect to appropriate dominating measures dxt and dyt,
respectively. These densities p(xt+1|xt, θ) and p(yt|xt, θ) corresponding to (1) and
(2) respectively are called the observation (or measurement) and transition den-
sities. The densities will typically depend upon a vector of unknown parameters
θ ∈ Θ that need to be estimated from the observations. In a Bayesian context θ
is treated as a random variable with prior p(θ).

The state variables xt and observations yt may be continuous-valued, discrete-
valued, or a combination of the two. The functions ηt and εt are possibly nonlinear
but of known form. Time is denoted by the subscripts t. Given a batch of
observations y1:T , we wish to learn θ and infer the latent states x1:T . For a
presentation of SSMs with different focuses and applications, see, e.g., Cappé et
al. (2005).

Here we revisit the data augmentation or imputation-posterior algorithm (IP)
introduced by Tanner and Wong (1987) for parameter learning in problems with
missing data. This algorithm provides an appealing, iterative scheme to es-
timate the posterior distribution of the parameters of interest, p(θ|y1:T ). We
present an academic example that allows us to evaluate the convergence of the
posterior estimate to the true posterior distribution. For our purposes we em-
ploy Markov chain Monte Carlo (MCMC) and sequential Monte-Carlo (SMC)
methods. Our objective is to evaluate the performance of this new approach
to nonlinear/non-Gaussian models, with a special focus on plant growth mod-
els (Trevezas & Cournède, 2013), to improve its convergence rate and eventually
to compare it with the state-of-art methods in terms of computational cost and
predictability.
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2 Methods

The term data augmentation refers to methods for constructing iterative opti-
mization or sampling algorithms via the introduction of unobserved data or latent
variables. In a Bayesian context, Tanner and Wong (1987) introduced the idea of
data augmentation to learn model parameters, θ, given a sequence of observations
y1:T , for missing data problems. The authors observed that in incomplete data
problems the posterior distribution of θ is the fixed point solution of an integral
equation and introduced the IP algorithm (Algorithm 1). If we apply the fixed
point principle to an SSM, we obtain that the posterior p(θ|y1:T ) of the unknown
parameter θ is a fixed point solution of the following integral equation:

p(θ|y1:T ) =

∫ ∫
p(θ|x1:T , y1:T )p(x1:T |y1:T , θ

′)p(θ′|y1:T )dx1:Tdθ
′. (3)

Given some approximation gi(θ) of the posterior p(θ|y1:T ) one may use Eq. (3) to
improve it:

gi+1(θ) =

∫
K(θ, θ′)gi(θ

′)dθ′, K(θ, θ′) =

∫
p(θ|x1:T , y1:T )p(x1:T |y1:T , θ

′)dx1:T .

for i← 1 to K do
Imputation step ;
for j ← 1 to M do

Draw θ(j) ∼ gi(θ) ;

Draw x
(j)
1:T ∼ p(x1:T |y1:T , θ) ;

end
Posterior step ;
Update the current approximation of p(θ|y1:T ), gi(θ), by the mixture of
conditional densities of θ given the augmented data patterns generated
in the imputation step

gi+1(θ) =
1

M

M∑
j=1

p(θ|y1:T , x
(j)
1:T ).

end

Algorithm 1: Imputation Posterior Algorithm

In order to implement the IP algorithm, we have to discuss how to sample
the parameters θ(j) from the current posterior estimate gi(θ). For this purpose
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we employ an MCMC algorithm, the Adaptive Metropolis Algorithm introduced
by Haario et al. (2001). We further need to sample the states x

(j)
1:T from the

distribution p(x1:T |y1:T , θ
(j)). To achieve this goal, we propose the use of particle

filtering or sequential Monte-Carlo methods (Doucet et al. 2001).
For a given value of the parameter vector θ, N particles are drawn from a pro-

posal distribution qt(·) and sequentially propagated over time. The particles that
best fit the data y1:T are given more weight through resampling. Finally, under
mild conditions, we obtain unbiased estimates of x

(j)
1:T from the target distribu-

tion p(x1:T |y1:T , θ). Different particle filtering algorithms are obtained by different
choices of the proposal distribution qt(·). In our context, q0 is the initial law of the
Markov chain. The proposal density qt(·) (t ≥ 1) is the transition density p(·|xt, θ)
as proposed by Gordon et al. (1993) in their so-called SIR filter (Algorithm 2).

Initialization ;

At t = 0 draw x
(i)
0 ∼ q0(x0) and set w

(i)
0 =

p(x
(i)
0 )

q0(x
(i)
0 )

;

for t← 1 to T do
Iteration i ;

Draw x
(i)
t ∼ qt(xt|x(i)

t−1) and compute the importance weights by

w
(i)
t ∼ w

(i)
t−1

p(yt|x(i)
t , θ)p(x

(i)
t |x

(i)
t−1, θ)

qt(x
(i)
t |x

(i)
t−1)

Normalize the importance weights ŵ
(i)
t =

w
(i)
t∑N

j=1 ŵ
(j)
t

;

Resample N particles with probabilities {ŵ(i)
t }Ni=1 and set w

(i)
t = 1

N
.

end

Algorithm 2: SIR Filter (each iteration is for i = 1, . . . , N)

3 A numerical example

Consider the linear Gaussian SSM taken from the summer school presentation of
(Doucet, 2012) :

xt+1 = θxt + σV Vt, Vt
iid∼ N (0, 1), (4)

yt = xt + σWWt, Wt
iid∼ N (0, 1). (5)
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θ is treated as an unknown parameter with uniform prior in (−1, 1). In this case

p(θ|x0:T , y1:T ) ∝ N(θ;mt, σ
2
t )1(−1,1)(θ),

where

σ2
t =

( t∑
k=2

x2
k−1

)−1

, mt =
( t∑

k=2

x2
k−1

)−1( t∑
k=2

xk−1xk

)
.

The true posterior distribution is calculated by using the classical Bayes’ formula

p(θ|y1:T ) =
p(θ)p(y1:T |θ)∫

Θ
p(θ)p(y1:T |θ)dθ

,

where the likelihood p(y1:T |θ) is computed by means of Kalman filter. A batch of
T = 100 observations are simulated for true parameter value equal to θ = −0.1
with σV = 1 and σW = 0.1. The total number of adaptive MCMC iterations
performed at each IP iteration is equal to 3000 with a burnin period of 100. A
number of N = 2000 particles are propagated at each run of the SIR filter over
time. Figure 1 presents the true posterior distribution of parameter θ and its
estimate resulting from our approach. We further present the estimates that re-
sult from the state-of-the-art algorithms PMMH (Andrieu et al. 2010) and PGAS
(Lindsten et al. 2014), with N = 5000 and N = 1000 particles, respectively.

Figure 1: Posterior distribution for the parameter of model (4)–(5) for K = 3000
IP iterations (M = 10 terms for the approximation of the current posterior).
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4 Conclusion and perspectives

In this work we present a new approach to perform bayesian parameter estimation
for state space models. This approach is based on data augmentation techniques
and sequential Monte-Carlo methods and is evaluated numerically by an academic
example. Further research includes the application of the method to non-linear/
non-Gaussian models, in particular plant growth models and its development to
make state inference.
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