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Résumé. On propose un nouvel test d’adéquation pour les modèles de régression
quantile. Le test se base sur l’interprétation des résidus de la régression quantile comme
des variables à expliquer dans une régression logistique associée, avec des variables ex-
plicatives bien choisies. La validité du modèle de régression quantile implique la nullité
de tous les coefficients dans le modèle logistique associé. L’idée est alors d’utiliser un
test de rapport de maximum de vraisemblance dans le modèle logistique pour valider
le modèle de régression quantile initial. La nouvelle approche pour vérifier l’adéquation
d’une régression quantile détecte des alternatives générales. Une procédure de réduction
de la dimension dans la régression logistique associée, à l’aide de projections, est également
proposée. Les valeurs critiques pour la statistique de type rapport de vraisemblance sont
calculées à l’aide d’une procédure de bootstrap dans le modèle quantile, similaire à celle
proposée par Feng et al. (2011). Les simulations montrent que le nouveau test se comporte
mieux que les tests non paramétriques existants.
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Abstract. A new lack-of-fit test for parametric quantile regression models is proposed.
The test is based on interpreting the residuals from the quantile regression model fit
as response values of a logistic regression, the predictors of the logistic regression being
functions of the covariates of the quantile model. Then a correct quantile model implies the
nullity of all the coefficients but the constant in the logistic model. Given this property, we
use a likelihood ratio test in the logistic regression to check the quantile regression model.
In the case of multivariate quantile regressions, to avoid working in very large dimension
logistic regression, we use predictors obtained as functions of univariate projections of the
covariates from the quantile model. Finally, we look for a ‘least favorable’ projection for
the null hypothesis of the likelihood ratio test. Our test can detect general departures
from the parametric quantile model. To approximate the critical values of the test, a
wild bootstrap mechanism is used, similar to that proposed by Feng et al. (2011). A
simulation study shows the good properties of the new test versus other nonparametric
tests available in the literature.
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1 Introduction

Let us consider a quantile regression model denoted by

Y = qτ (X) + ε,

where qτ (·) represents the regression function and the error ε has a conditional τ -quantile
equal to zero, that is P(ε ≤ 0|X = x) = τ for almost all x. Koenker & Bassett (1978) pro-
posed a linear quantile modeling. Chaudhuri (1991) studied the nonparametric quantile
regression. More recently, semiparametric single-index models were proposed by Kong &
Xia (2012). In this paper, we propose a new test of a parametric (linear or nonlinear)
quantile regression model against general alternatives.

Consider a sample of independent observations (X1, Y1), · · · , (Xn, Yn) of the response
variable Y and the covariate X = (X(1), · · · , X(q)) ∈ Rq. The covariate vector could
have continuous and discrete components. Formally, we address the problem of testing a
parametric model of quantile regression

H0 : qτ (·) ∈M =
{
qτ (·, θ) : θ ∈ Θ ⊂ Rd

}
, (1)

versus a nonparametric alternative supθ P(qτ (X) = qτ (X, θ)) < 1. This problem was
addressed by He & Zhu (2003), Zheng (1998), Horowitz & Spokoiny (2002), among others.

For the parameter estimation in the model under test, we follow Koenker & Bas-
sett (1978) who proposed estimating the τ -quantile of the response variable Y given the
covariate X (denoted by qτ (X, θ)) as the minimizer of

n∑
i=1

ρτ (Yi − qτ (Xi, θ)) ,

where ρτ (u) = u
(
τ − I(u < 0)

)
is the well-known quantile loss function and I(·) denotes

the indicator of an event. In the following, θ̂ is a solution of this minimization problem.

2 The new method

Following an idea introduced by Redden et al. (2004), the new lack-of-fit test is based on
the dichotomous variable

Z(θ) = I(Y ≤ qτ (X, θ)).

The parametric quantile regression model is correct if and only if there exists some θ0 ∈ Θ
such that the conditional probability of Z(θ0) given X does not depend on X, and is equal
to τ . To check the independence between a suitable Z(θ) and X, the idea is to consider

a logistic regression with response Z(θ̂) and many covariates obtained as functions of the
components of the vector X, and to test the nullity of all the coefficient but the constant.

Let us introduce some more notation. Consider a sample (W1, V1), · · · , (Wn, Vn) where
the response variable V only takes values 0 or 1, and W is a vector of explanatory variables
with the first component equal to 1. In a logistic regression,

logit (P(V = 1|W = w)) = ϕ′w,
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where logit(p) = log(p/(1−p)) is the well-known logistic transformation and ϕ is a vector
of parameters. We can estimate the previous logistic regression model via penalized max-
imum likelihood (ML). Then, the estimated parameter ϕ̂ could be computed as follows:

ϕ̂ = arg max
ϕ

[
n−1 Ln(ϕ, V,W ) + λ ‖ϕ‖

]
= arg max

ϕ

[
1

n

n∑
i=1

(
Viϕ

′Wi − log(1 + eϕ
′Wi)
)

+ λ ‖ϕ‖

]
,

(2)

where L denotes the likelihood function, ‖ · ‖ denotes the Euclidean norm and λ is the
smoothing parameter. We have considered a penalized ML estimation in order to control
for large values of the coefficients that are likely to occur due to the separation problem,
a well-known practical aspect in logistic regression.

To detect general alternatives, the vector W used in the logistic regression should
contain many functions of the components of X, the original covariate vector in the
quantile regression. To avoid working with very large dimensions forW , that are inevitable
if X is multivariate, we follow a projection approach. More precisely, we note that H0

defined in (1) holds true if and only if, for some θ0 ∈ Θ ⊂ Rd, and ∀β ∈ Rq with ‖β‖ = 1,

E [I(Y ≤ qτ (X, θ0))− τ |Fβ(β′X)] = 0, (3)

where Fβ(t) = P(β′X ≤ t) represents the distribution function of the projected covariates.
This property suggests that it suffices to consider the logistic regression with W a vector
of univariate functions of β′X and to check whether all the coefficients but the constant
are null. Finally, it remains to search a ’least favorable’ direction β for the null hypothesis
(1), such as Conde-Amboage et al. (2015) and Patilea et al. (2015) did.

To formally describe our procedure, let

Pi(β) = (1, H2(β
′Xi), H3(β

′Xi), . . . , Hp(β
′Xi))

′, 1 ≤ i ≤ n,

represent a basis of Hermite polynomial evaluated at the projections β′X1, · · · , β′Xn. Let
us recall that the Hermite polynomial of order p is defined as

Hp(x) = p!

[p/2]∑
m=0

(−1)m

m!(p− 2m)!

xp−2m

2m
, x ∈ R, p ≥ 1,

where [a] denotes the integer part of a real number a. The idea is to check whether, for
some value θ0, we have ϕ1 = ϕ2 = · · · = ϕp = 0 in logistic regression model

logit (P[Z(θ0) = 1|P (β)]) = ϕ1 + ϕ2H2(β
′X) + · · ·+ ϕpHp(β

′X) = ϕ′P (β).

The infeasible responses Zi(θ0) are replaced by Zi(θ̂). Meanwhile, ϕ is estimated following
the procedure described in equation (2) with

Ln(ϕ,Z(θ̂), P (β)) =
n∑
i=1

(
Zi(θ̂)ϕ

′Pi(β)− log(1 + eϕ
′Pi(β))

)
,

3



and some suitable λ. To check the significance of the coefficients ϕ but ϕ1 (the constant
ϕ1 should be equal to logit(τ)), we use a likelihood ratio type statistic.

Gathering facts, the new lack-of-fit test for quantile regression is based on the test
statistic

T = max
β∈Rq ,‖β‖=1

2
(
Ln(ϕ̂, Z(θ̂), P (β))− Ln(logit(τ), Z(θ̂), 1)

)
, (4)

where

Ln(logit(τ), Z(θ̂), 1) =
n∑
i=1

[
Zi(θ̂)logit(τ)− log(1 + elogit(τ))

]
.

A bootstrap procedure in the quantile regression context will be proposed in order to
calibrate the critical values for the test statistic (4). The bootstrap procedure works as
follows:

1.- Let ε?i = δi|ri|, where ri = Yi − qτ (Xi, θ̂) are the residuals from the original sample.
The multipliers, δi, are independently generated from the two-point distribution with
probabilities (1 − τ) and τ at 2(1 − τ) and −2τ , respectively; see also Feng et al.

(2011). Compute Y ?
i = qτ (Xi, θ̂) + ε?i for each i = 1, · · · , n.

2.- Use the bootstrap data set {(Xi, Y
?
i ), i = 1, · · · , n} to compute the bootstrap esti-

mator θ̂? and the dichotomous variables Zi(θ̂
?) = I(Y ?

i ≤ qτ (Xi, θ̂
?)).

3.- Use the data set {(Pi(β), Zi(θ
?)), i = 1, · · · , n} to compute the estimator ϕ̂?, following

the procedure described in (2) with Ln(ϕ,Zi(θ̂
?), P (β)), and the new test statistic

T ? = max
β∈Rq ,‖β‖=1

2
(
Ln(ϕ̂?, Z(θ̂?), P (β))− Ln(logit(τ), Z(θ̂?), 1)

)
.

4.- Repeat Steps 1, 2 and 3 many times, and estimate the α-level critical value by the
(1− α)-quantile of the empirical distribution of T ?.

Note that the covariate of the logistic model, the Pi(β) do not need to be computed for
each bootstrap sample because it only depends on the covariates. Moreover, to compute
the test statistic represented in (4), we are going to use the sequential algorithm based
on successive one-dimensional optimizations proposed by Patilea et al. (2015).

3 Simulation study

We will study the performance of the proposed method under the null and alternative
hypotheses using Monte Carlo simulations. The number of simulated original samples was
200 and the number of bootstrap replications 500. The number p of Hermite polynomials
was p = [

√
n]. In addition, the smoothing parameter λ related to the penalized maximum

likelihood will be set to n−1 log(n) in order to avoid the separation problem.
First we study the behavior under the null hypothesis. Data will be simulated from

the following median (τ = 0.5) regression model:

Model 1: Y = 1 +X(1) +X(2) + ε1
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α = 0.1 α = 0.05 α = 0.01

n = 49 0.105 0.035 0.000
n = 100 0.100 0.055 0.010

Table 1: Proportions of rejections associated with the new lack-of-fit test for Model 1 for
different nominal levels and different sample sizes.

α = 0.10 α = 0.05 α = 0.01
NT HZ CSG MLP NT HZ CSG MLP NT HZ CSG MLP

D1 n = 49 0.800 0.150 0.130 0.120 0.730 0.090 0.050 0.080 0.555 0.015 0.025 0.025
n = 100 0.985 0.105 0.170 0.155 0.975 0.055 0.085 0.055 0.925 0.015 0.005 0.010

D2 n = 49 0.775 0.260 0.075 0.145 0.695 0.160 0.035 0.075 0.485 0.070 0.010 0.025
n = 100 0.995 0.740 0.185 0.145 0.980 0.570 0.055 0.075 0.940 0.220 0.010 0.010

Table 2: Proportions of rejections for each of the three lack-of-fit tests considered for Model 2
for different deviations from the null hypothesis, different sample sizes n and nominal levels α.

where X(i) ∼ U(0, 1) with i = 1, 2 and ε1 ∼ N(0, 1). Table 1 present the proportion of
samples for which the null hypothesis (1) was rejected, for different sample sizes n and
nominal levels α. The new method shows a good adjustment to the nominal level, even
for a small sample size.

Next, the performance of the new test under different alternatives will be studied. The
new test will be compared with that of Maistre el at. (2014) denoted by MLP, Conde-
Amboage et al. (2015) denoted by CSG, and He & Zhu (2003) denoted by HZ. Our new
test will be denoted by NT. In order to analyze their performance under the alternative
hypothesis, we will consider the following median regression model:

Model 2: Y = 1 +X(1) +X(2) + h(X(1), X(2)) + ε2,

where X(1) ∼ N(0, 1), X(2) ∼ U(0, 1) and ε2 + 1 ∼ LogN(0, 1). The function h(·) repre-
sents the deviation from the null hypothesis. Two different deviations will be considered:

– h(X(1), X(2)) = 5 sin
(
2π(1 +X(1) +X(2))

)
, that will be denoted by D1;

– h(X(1), X(2)) = 10 (X(2))2, that will be denoted by D2.

Table 2 shows the proportion of samples for which the null hypothesis (1) was rejected
under each of the cited methods, NT, HZ, CSG and MLP, for different sample sizes n and
nominal levels α. According to Table 2, the power of the new test for the deviations D1
and D2 is clearly superior compared with the considered nonparametric competitors.
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4 Conclusions

We proposed a new lack-of-fit test for quantile regression models, together with a boot-
strap mechanism to approximate the critical values. The bootstrap approximation does
not need to estimate the conditional sparsity. We found a promising performance of the
new test in comparison with some natural competitors.
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5047 from the Spanish Ministry of Education. V. Patilea acknowledges financial support from
the research program New Challenges for New Data of LCL and Genes.

Bibliography

Chaudhuri, P. (1991). Nonparametric estimates of regression quantiles and their local Bahadur
representation. Annals of Statistics, 2, 760–777.

Conde-Amboage, M., Sánchez-Sellero, C. and González-Manteiga, W. (2015). A lack-of-fit test
of quantile regression models with multiple covariates. Computational Statistics & Data Anal-
ysis, 88, 128–138.

Feng, X., He, X. and Hu, J. (2011). Wild bootstrap for quantile regression. Biometrika, 98,
995–999.

He, X. and Zhu, L.-X. (2003). A lack-of-fit test for quantile regression. Journal of the American
Statistical Association, 98, 1013–1022.

Horowitz, J.L. and Spokoiny, V.G. (2002). An adaptive, rate-optimal test of linearity for median
regression models. Journal of the American Statistical Association, 97, 822–835.

Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33–50.

Kong, E. and Xia, Y. (2012). A single-index quantile regression model and its estimation. Econo-
metric Theory, 28, 730–768.

Maistre, S., Lavergne, P and Patilea, V. (2014). Powerful nonparametric checks for quantile
regression. arXiv:1404.0216 [math.ST].

Patilea, V., Sánchez-Sellero, C. and Saumard, M. (2015). Testing the predictor effect on a
functional response. Journal of the American Statistical Association, forthcoming.

Redden, D.T., Fernandez, J.R. and Allison, D.B. (2004). A simple significance test for quantile
regression. Statistics in Medicine, 23, 2587–2597.

Zheng, J. X. (1998). A consistent nonparametric test of parametric regression models under
conditional quantile restrictions. Econometric Theory, 14, 123–138.

6


	Introduction
	The new method
	Simulation study
	Conclusions

