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Résumé. Nous proposons une méthode d’imputation multiple pour des données issues
d’une distribution elliptique. Pour imputer en effectuant un tirage dans la distribution
prédictive des données manquantes sachant les données observées, nous exploitons les
liens entre distribution elliptique, distance de manahalobis et le concept de profondeur
des données (mesure de centralité des données). L’imputation réalisée permet ainsi de
préserver la distribution des données. Pour effectuer une imputation multiple au sens de
Rubin et refléter I'incertitude associée a la prédiction des données d’une imputation a
I’autre, nous utilisons ensuite une approche par boostrap non-parametrique. Les bonnes
performances de la méthode sont illustrées via des simulations.

Mots-clés. Imputation multiple, distribution elliptique, imputation stochastique,
distance de Mahalanobis, profondeur des données.

Abstract. A method for stochastic and multiple imputation of missing values is
proposed for data coming from an elliptically symmetric distribution. For a pair of lo-
cation and shape estimates, it exploits the Mahalanobis distance and an affine-invariant
centrality measure (data depth) for drawing from conditional distributions, and reflects
uncertainty by means of the Markov chain Monte Carlo and a bootstrap. As shown by
a simulation study, the proposed method imputes close to the data and does not suffer
from undercovering.
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1 Introduction

Many of statistical methods for handling continuous random variables have been devel-
oped based on the assumption of normality, and the machinery for imputation of missing
data is not an exception. For the multivariate normal distribution with a portion of entries
missing (completely) at random (M(C)AR; see Rubin, 1976; Van Buuren, 2012), the point
estimate of mean and covariance matrix can be obtained by the EM-algorithm (Dempster



et al., 1977), while inference can be drawn by means of multiple imputation. For the last
one, the model uncertainty may be reflected using either bootstrap or Bayesian approach,
see Schafer (1997) and, e.g., packages Amelia and norm for an R-implementation.

In contemporary applications, however, often occur data, whose density shape devi-
ates from the normal one. A natural extension of the multivariate normal model is the
elliptically symmetric one, which allows for a broad class of densities but maintains the
elliptical geometry of data. Given a vector g € R? and a d x d matrix A, a random vector
X is said to be elliptically distributed if

X 2 1+ RAU,

for a nonnegative random variable R € R, and a random vector U uniformly distributed
on the unit sphere S9!, or equivalently X ~ E;(u, X, Fr), with ¥ = AA” and Fy being
a cumulative distribution function (c.d.f.) of R. Formally, dimension of U as well as the
rank of A can be smaller than d, and, in general, X may not possess a density (Fang et al.,
1990). In the current presentation we restrict to the “nice” case, when Fp is absolutely
continuous and A and X are invertible. Then X possesses density
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where disan.(us)(Z) = v/ (z — p)’S " (x — p) is the Mahalanobis distance (Mahalanobis,
1936) to p, f : Ry — R, is the radial density, and ¢4 s is a constant ensuring that fx
integrates to one.

In what follows, we elaborate on the problem of corruption of a data set consisting of
n observations drawn from &,(p, 3, Fg) by absent entries appearing due to the M(C)AR
mechanism. Denote this by X = {x,...,x,}, where for some i-s, entries indexed with
miss(i) are missing, and those indexed with obs(i) are observed. First, in Section 2,
we present the stochastic imputation scheme and point out its extension to the use of
data depth - a statistical measure of centrality w.r.t. a probability measure or a data
cloud (Zuo and Serfling, 2000; Mosler, 2013). Then, in Section 3, we suggest a proce-
dure for multiple imputation of elliptical distributions, based on depth distribution and
Mahalanobis distance. We end the presentation by a short discussion in Section 4.

2 Stochastic imputation

The task of stochastic (or improper) imputation is to reflect uncertainty due to the distri-
bution. Thus, in the case of multivariate normality, one can use the EM point estimates
to draw &,,;ss from N (p, X)) conditioned on @ For elliptical symmetry the task is more
complicated. First, an algorithm estimating p and ¥ with missing data able to work
for any elliptical distribution is required, and second, the density to draw from is gener-
ally unknown. To overcome the first difficulty, we design a Markov chain Monte Carlo



(MCMC) allowing to use estimators on complete data. Again, we first stick to the “nice”
assumption and additionally admit moment estimates for p and ¥ to easily derive their
conditional counterparts. The second problem seems to be more involved, we consider it
in detail right below.

As our aim is imputation, 7.e. rather to make a draw close to the data than to estimate
the density, we exploit the idea of data depth when employing the following strategy. For
an absolutely continuous elliptically symmetric distribution, any data depth satisfying
corresponding postulates from Mosler (2013) or Zuo and Serfling (2000) possesses the
characterization property: it is a monotone function of the radial density, which in order
is expected to be a monotone function of the Mahalanobis distance. For the Mahalanobis
depth, which is just a monotone transformation of the Mahalanobis distance, this rela-
tionship is the most intuitive. In what follows we denote a generic depth function w.r.t.
X by Dx ().

Different to normal case, the shape of conditional distribution, and of the c.d.f. of
depth as well, will differ from the unconditional one. The corresponding transformation
will be mainly defined by Mahalanobis distances of the points and of the conditional
mean. Let (for shortness) pu* € R? denote the conditional mean for a point with missing
entries. Further let fp, (x) denote the density of the depth for a random vector X € R
w.r.t. a sample X. The depth should then be drawn as a quantile () uniformly on
[0, Fj- (Dx ()], with (we omit mean and covariance for shortness)
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and projected back on the support by D = F ,}1(@). The aim of this transformation is to
normalize the volume. Any constant normalization factor can be omitted here as F,«(-) is
used exceptionally for drawing. The square root in the formula could be avoided, but this
way Mahalanobis distance is exploited as a function of depth for joint distribution only,
which can be obtained from the data without further transformations. For instance, when
using the Mahalanobis depth, one can substitute directly in the equation (1) dasen.(y) by
V1/y—1.

Now we should find the point on the region of depth D (this point will lie in its
intersection with the hyperplane of missing values). We draw U* uniformly on S#miss—1
set, and transform it by conditional scatter matrix obtaining U € R? having U,,;ss = A*U*
(with X,iss,miss —Emiswbsﬂgbl&obsEobs,miss = A*(A")") and Uys = 0. Such U is distributed
uniformly on the conditional density contour. Then a having missing coordinates is
imputed as * = p* 4+ aU, where « is a positive scalar obtained as the solution of the
quadratic equation (p* +alU — p)E~ (u* 4+ U — p) = d3,,;, (D).

dy,




Now we are ready to formulate the MCMC algorithm (Algorithm 1) for improper
imputation, which we start with single imputation (impute.single can be any single
imputation method) to shorten the burn-in period. A step of Algorithm 1 is demonstrated
in Figure 1.

Algorithm 1 Improper imputation

1: function IMPUTE.ELL.IMPROPER(X, num.burnin)

2 Y < IMPUTE.SINGLE(X) > Start MCMC with single imputation
3 for k = 1: (num.burnin + 1) do

4: po— (YY)

5: Y+ 3X(Y)

6 Estimate fpy (v)

7 fori=1:ndo

8 if miss(i) # (0 then

9 Fopiss(iy € Mmiss(i) > Calculate conditional mean
10: + EmiSS(i),obS(i)E;zig(i),obs(i)(yi,obs(z‘) - H’obs(i))

11: Fobs(iy <= Yiobs(i)

12: Calculate F,«(-)

13: Q « Unif ([0, F.- (D(p))]) > Draw depth
14: D + F;*l (Q)

15: U* « Unif(S#miss()=1) > Draw random direction
16: Umiss(i) «— U*A"

17: Uobs(i) —0

18: « < positive solution of > Intersection with contour
19: Brpan. (D) = (" + aU — p) TN (p* + alU — ).
20: Yimiss(i) < Mmiss(i) T @Umiss (i) > Impute missing entries
21: return Y

3 Multiple imputation

To reflect the uncertainty of model parameters as well, one can make use of multiple
imputation. For an elliptically symmetric distribution, the natural parameters are the
mean vector p and the covariance matrix 3. As no distributional assumptions are made,
we resort to bootstrap, which leads to a slight modification of the Algorithm 1. First,
a bootstrap sequence of indices is generated (by,...,b,), each b;, i = 1,...,n drawn as
Unif({1,...,n}). Then, in each iteration, for estimation of g and ¥ (lines 4-5 of Algo-
rithm 1) Y® = {y, ,...,y, } should be used instead of Y.

We apply multiple imputation to a model 3'(1,2') + ¢, with 8 = (0.5,1,3), & ~
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Figure 1: Ilustration of Algorithm 1. Drawing depth D = F,:*l(Q) via the depth c.d.f.
F,- (left) and locating the corresponding imputed point 2™*) (right).
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samples. This yields a three dimensional multivariate normal distributions of the vector
(x',y). We include R-packages Amelia and mice in the comparison. The results are
presented in Table 1. Columns “med”, “cov”, and “confi” indicate respectively median
of the estimated regression coefficients, coverage by the 95% confidence interval calculated
according to the Rubins’ rules, and median width of the confidence interval, over 1000
runs.

N (<1> <]- 1)>7 and € ~ ]\7(07 025)7 generating m=>5and m = 20 multlply—lmPUted

Table 1: Simulation results for Model 2

Bo B B2
med cov confi || med cov confi || med cov confi
m=>5
Amelia || 0.5 0.946 0.536 || 1.005 0.939 0.438 || 2.999 0.94 0.226
mice 0.525 0.984 1.464 || 1.063 0.975 1.476 | 2.92 0.976 0.88
Ell 0.513 0.974 0.719 || 0.989 0.957 0.589 || 3 0.961 0.295
m = 20
Amelia || 0.487 0.931 0.489 || 1.01  0.941 0.399 || 2.998 0.929 0.206
mice 0.519 0984 1.6 1.081 098 1.807 || 2.881 0.982 1.502
Ell 0.504 0.971 0.613 || 0.989 0.979 0.519 || 3.003 0.97 0.26

One can see that the proposed method has a slightly higher coverage due to wider
confidence intervals, which, on the other hand, is never below 95%. Additional study
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(not presented here) confirms these to be reasoned by the higher between sample varia-
tion, which can be explained by the semi-parametric nature of the model. Another not
presented simulation shows very precise reconstruction of quantiles for distributions with
heavier tails, e.g. Student-t with 3 and 5 degrees of freedom. It is interesting to notice,
that for Model 2, where the correlation between second and third dimensions is very high
(~ 0.988), mice with normal imputation turns out to be biased.

4 Discussion

The proposed method in a unified way performs stochastic and multiple imputation for
the natural generalization of the multivariate normal model — elliptically symmetric distri-
butions. The considered (joint) model is of semi-parametric nature. While its parametric
part (location and shape estimates) is dealt with by the transform based on Mahalanobis
distance, the non-parametric one (radial density) is accounted for by a c.d.f. of a centrality
measure. By that, it is able to impute close to the underlying radial density, and thus re-
flects quantiles and further distribution-dependent statistics. When using statistical data
depth or an outlier-persistent estimator for the covariance matrix, the technique can be
used for robust imputation. As the simulation study shows, the proposed method never
suffers from under-covering, and thus, though somewhat conservative, may be preferred
in practice.

References

[1] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), Maximum likelihood from
incomplete data via the EM algorithm, Journal of the Royal Statistical Society. Series B,
39, 1-38.

[2] Fang, K.-T., Kotz, S., and Ng, K. W. (1990), Symmetric Multivariate and Related
Distributions, Chapman & Hall, London.

[3] Mahalanobis, P. (1936), On the generalized distance in statistics, Proceedings of the
National Academy India, 12, 49-55.

[4] Mosler, K. (2013), Depth statistics, In: Robustness and Complex Data Structures,
Festschrift in Honour of Ursula Gather, Springer, Berlin, 17-34.

[5] Rubin, D. B. (1976), Inference and missing data, Biometrika, 63, 581-592.

[6] Schafer, J. (1997), Analysis of Incomplete Multivariate Data, Chapman & Hall/CRC,
Boca Raton.

[7] Van Buuren, S. (2012), Flezible Imputation of Missing Data, Chapman & Hall/CRC,
Boca Raton.

[8] Zuo, Y. J. and Serfling, R. (2000), General notions of statistical depth function, The
Annals of Statistics, 28, 461-482.



