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3 University of Delaware, USA

Résumé. La détection de ruptures dans une suite de données ordonnées dans le
temps ou dans l’espace est un problème important dans de nombreux domaines tels que
la génétique et la finance. Nous dérivons la distribution asymptotique d’une statistique
récemment proposée pour détecter les ruptures, établissant ainsi sa validité. La simulation
de sa distribution limite estimée conduit à un nouvel algorithme e�cace de détection
de ruptures, qui peut être utilisé sur des signaux trés longs. Pour finir, nous évaluons
brièvement ce nouvel algorithme sur des données à une ou à plusieurs dimensions.
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Abstract. The detection of change-points in a spatially or time-ordered data se-
quence is an important problem in many fields such as genetics and finance. We derive
the asymptotic distribution of a statistic recently suggested for detecting change-points
involving U-statistics, thus establishing its validity. Simulation of its estimated limit dis-
tribution leads to a new and computationally e�cient change-point detection algorithm,
which can be used on very long signals. To finish, we assess this new algorithm on one-
and multi-dimensional data.
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1 Introduction

The present article builds upon an interesting nonparametric change-point detection
method that was recently proposed by Matteson and James (2014). Their method uses
U-statistics as the basis of a change-point test. Its interest lies in its ability to detect
quite general types of change in distribution, rather than only changes in mean.

Our paper has two main objectives. First, it provides a full theoretical justification of
the results in Matteson and James (2014), including a derivation of the limit distribution
of the statistic. Second, we provide a method to simulate from an approximate version of
the limit distribution. This leads to a new computationally e�cient strategy for change-
point detection that can be run on much longer signals. Due to space constraints, the
computational algorithm and simulations, as well as proofs, can be found in the long
version of the article at the author’s websites.
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2 Theoretical results

2.1 Measuring di↵erences between multivariate distributions

Let us first briefly describe the origins of the nonparametric change-point detection
method described in Matteson and James (2014). For random variables Y, Z taking
values in Rd, d � 1, let �Y and �Z denote their respective characteristic functions. A
measure of the divergence (or “di↵erence”) between the distributions of Y and Z is as
follows:

D(Y, Z) =

Z

R
|�Y (t)� �Z(t)|2 w(t)dt, (1)

where w(t) is an arbitrary positive weight function for which this integral exists. It
turns out that for a particular weight function which depends on a � 2 (0, 2), one can
obtain a very useful result. Let Y, Y

0 be i.i.d. FY and Z,Z

0 be i.i.d. FZ , with Y, Y

0,
Z and Z

0 mutually independent. Denote by |·| the Euclidean norm on Rd. Then, if
E(|Y |� + |Z|�) < 1, Theorem 2 of Székely and Rizzo (2004) yields that

D(Y, Z; �) = E(Y, Z; �) := 2E |Y � Z|� � E |Y � Y

0|� � E |Z � Z

0|� � 0, (2)

where we have written D(Y, Z; �) instead of D(Y, Z) to highlight dependence on �. Fur-
thermore, Theorem 2 of Székely and Rizzo (2005) says that E(Y, Z; �) = 0 if and only if
Y and Z have the same distribution. This remarkable result leads to a simple data-driven
divergence measure for distributions. Seen in the context of hypothesizing a change-point
in a signal of independent observations X = (X1, . . . , Xn) after the k-th observation Xk,
we simply calculate an empirical version of (2):

Ek,n(X; �) =
2

k(n� k)

kX

i=1

nX

j=k+1

|Xi �Xj|� �
✓
k

2

◆�1 X

1i<jk

|Xi �Xj|�

�
✓
n� k

2

◆�1 X

1+ki<jn

|Xi �Xj|� . (3)

Matteson and James (2014) state without proof that under the null hypothesis ofX1, . . . , Xn

being i.i.d. (no change-points), the sample divergence given in (3) scaled by k(n�k)
n con-

verges in distribution to a non-degenerate random variable as long as min{k, n�k} ! 1.
Furthermore, they state that if there is a change-point between two distinct i.i.d. distri-
butions after the k-th point, the sample divergence scaled by k(n�k)

n tends a.s. to infinity
as long as min{k, n� k} ! 1. These claims clearly point to a useful statistical test for
detecting change-points. However, we cannot find rigorous mathematical arguments to
substantiate them in Matteson and James (2014), nor in the earlier work of Székely and
Rizzo (2005).
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Here, we shall show the existence of the non-degenerate random variable hinted at
in Matteson and James (2014) by deriving its distribution. We also show that in the
presence of a change-point the correctly-scaled sample divergence indeed tends to infinity
with probability 1.

2.2 Main result

Let us first begin in a more general setup. Let X1, . . . , Xn be independent Rd-valued
random variables. For any symmetric measurable function ' : Rd ⇥ Rd ! R, whenever
the indices make sense we define the following four terms:

Vk(') :=
kX

i=1

nX

j=k+1

'(Xi, Xj), (4)

Un (') :=
X

1i<jn

'(Xi, Xj), (5)

U

(1)
k (') :=

X

1i<jk

'(Xi, Xj), (6)

U

(2)
k (') :=

X

k+1i<jn

'(Xi, Xj). (7)

Otherwise, define the term to be zero. Note that in the context of the change-point
algorithm we have in mind, '(x, y) = '�(x, y) := |x� y|�, � 2 (0, 2). Next, let us define

Uk,n(') :=
2

k(n� k)
Vk(')�

✓
k

2

◆�1

U

(1)
k (')�

✓
n� k

2

◆�1

U

(2)
k ('). (8)

While Uk,n(') is not a U-statistic, we can express it as a linear combination of U-statistics.
Indeed, we find that

Uk,n(') =
2(n� 1)

k(n� k)

 
Un(')

n� 1
�
 
U

(1)
k (')

k � 1
+

U

(2)
k (')

n� k � 1

!!
. (9)

Therefore, we now have an expression for Uk,n(') made up of U-statistics. Our aim is
to use a test based on Uk,n(') for the null hypothesis H0 : X1, . . . , Xn have the same
distribution, versus the alternative hypothesis H1 that there is a change-point in the
sequence X1, . . . , Xn, i.e.,

H1 : There is a � 2 (0, 1) such that P(X1  t) = · · · = P(Xbn�c  t), (10)

P(Xbn�c+1  t) = · · · = P(Xn  t), t 2 Rd
, (11)

and P(Xbn�c  t0) 6= P(Xbn�c+1  t0) for some t0. (12)

3



For u, v 2 Rd, u  v means that each component of u is less than or equal to the
corresponding component of v.

Let us now examine the asymptotic properties of Uk,n('). In the following, we shall
denote by F the common (unknown) distribution function of the Xi under H0, X a
generic random variable with distribution function F , and X

0 an independent copy of X.
We assume that

E'2(X,X

0) =

Z

Rd

Z

Rd

'

2(x, y)dF (x)dF (y) < 1, (13)

and set ⇥ = E'(X,X

0). We also denote '1(x) = E'(x,X 0), and define

h(x, y) = '(x, y)� '1(x)� '1(y), h̃2(x, y) = h(x, y) +⇥. (14)

We define the operator A on L2(Rd
, F ) by

Ag(x) :=

Z

Rd

h̃2(x, y)g(y)dF (y), x 2 Rd
, g 2 L2(Rd

, F ). (15)

Let �i, i � 1, be the eigenvalues of this operator A with corresponding orthonormal
eigenfunctions �i, i � 1. Since for all x 2 Rd,

Z

Rd

h̃2(x, y)dF (y) = 0, (16)

we see with �1 := 1, A�1 = 0 =: �1�1. Thus (0, 1) = (�1,�1) is an eigenvalue and
normalized eigenfunction pair of the operator A. This implies that for every eigenvalue
and normalized eigenfunction pair (�i,�i), i � 2, where �i is nonzero,

E (�1(X)�i(X)) = E�i(X) = 0. (17)

Moreover, we have that in L2(Rd ⇥ Rd
, F ⇥ F ),

h̃2(x, y) = lim
K!1

KX

i=1

�i�i(x)�i(y). (18)

From this we get that

Eh̃2
2(X,X

0) =
1X

i=1

�

2
i . (19)

We shall assume further that
1X

i=1

|�i| < 1. (20)

It is crucial for the change-point testing procedure that we shall propose that the function
h̃2(x, y) defined as in (20) with '(x, y) = '�(x, y) = |x � y|�, � 2 (0, 2), satisfies (20)
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whenever (13) holds. A proof of this can be found in the long version of the article on
the author’s websites.

Next, for any fixed 2
n  t < 1� 2

n , n � 3, set

Yn(h̃2, t) :=
(bntc (n� bntc))2

n

2(n� 1)
Ubntc,n(h̃2) (21)

=
2bntc (n� bntc)

n

2

 
Un(h̃2)

n� 1
�
 
U

(1)
bntc(h̃2)

bntc � 1
+

U

(2)
bntc(h̃2)

n� bntc � 1

!!
.

In the following theorem, {B(i)}i�1 denotes a sequence of independent standard Brownian
bridges.

Theorem 2.1 Whenever Xi, i � 1 are i.i.d. F and ' satisfies (13) and (20), Yn(', ·)
converges weakly in D

1[0, 1] to the tied down mean zero continuous process Y defined on
[0, 1] by

Y(t) :=
1X

i=1

�i

⇣
t (1� t)� �B(i) (t)

�2⌘
. (22)

In particular,

sup
t2[0,1]

|Yn(', t)| D�! sup
t2[0,1]

|Y(t)| . (23)

Remark 2.1 Note that a special case of Theorem 2.1 says that for each t 2 (0, 1),

(bntc (n� bntc))2
n

2(n� 1)
Ubntc,n(')

D�! Y(t). (24)

As suggested in Matteson and James (2014), under the following assumption, a con-
vergence with probability 1 result can be proved for the empirical statistic Ek,n(X; �) in
(3). We shall show that this is indeed the case.

Assumption 1 Let Yi, i � 1, and Zi, i � 1, be independent i.i.d. sequences, respectively
FY and FZ. Also let Y, Y

0 be i.i.d. FY and Z,Z

0 be i.i.d. FZ, with Y, Y

0
, Z and Z

0

mutually independent. Assume that for some � 2 (0, 2), E(|Y |� + |Z|�) < 1. Choose
� 2 (0, 1). For any given n > 1/�, let Xi = Yi, for i = 1, . . . , bn�c, and Xi+bn�c = Zi, for
i = 1, . . . , n� bn�c.

Lemma 2.1 Whenever for a given � 2 (0, 2) Assumption 1 holds, with probability 1 we
have:

Ebn�c,n(X; �) ! E(Y, Z; �). (25)
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Next, let '(x, y) = |x� y|�, � 2 (0, 2). We see that for any � 2 (0, 1) for all large enough
n,

sup
t2[0,1]

|Yn(', t)| � (bn�c (n� bn�c))2
n

2(n� 1)
Ebn�c,n(X; �), (26)

where it is understood that Assumption 1 holds. Thus by Lemma 2.1, under Assumption
1, whenever FY 6= FZ , with probability 1,

sup
t2[0,1]

|Yn(', t)| ! 1. (27)

This shows that change-point tests based on the statistic supt2[0,1] |Yn(', t)|, under the
sequence of alternatives of the type given by Assumption 1, are consistent. This also has
great practical use when looking for change-points. Intuitively, the k 2 {1, . . . , n} that
maximizes (3) would be a good candidate for a change-point location.

3 From theory to practice

Theorem 2.1 and the consistency result that follows it lay a firm theoretical foundation
to justify the change-point method introduced in Matteson and James (2014). For the
present article, since we are not aware of a closed form expression for the distribution
function of the limit process, we may imagine that this asymptotic result is of limited
practical use. Remarkably, it turns out that we can e�ciently approximate via simulation
the distribution of its supremum, leading to a new change-point detection algorithm with
similar performance to Matteson and James (2014) but much faster for longer signals.
For space reasons, this and the simulations that go with it can be found in the longer
version on the author’s websites.
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