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Résumé. Nous proposons un test statistique qui permet de mettre en vidence la nature
Poissonienne d’un processus de Cox. La méthodologie employée utilise une comparaison
d’estimateurs des fonctions de moyenne et de variance basés sur n copies du processus de Cox.
Nous étudions les propriétés asymptotiques de la statistique de test ainsi définie.
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Abstract. We propose a test statistic to highlight the Poisson nature of a Cox process. Our
methodology involves a comparison of estimators of the mean and variance functions based on
n copies of the Cox process. We investigate the asymptotic properties of the test statistic.
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1 Introduction
Count process formulation is commonly used to describe and analyse many kind of data in
sciences and engineering. A special class of such processes that researchers across in differ-
ent fields frequently encounter are the so-called Cox processes or doubly stochastic processes.
Compared to the standard Poisson process, the key feature of a Cox process is that its arrival
rate is stochastic, depending on some covariate. In other words, if we let N = (Nt)t∈R+ the
Cox process and Λ = (Λ(t))t∈R+ the (stochastic) cumulative arrival rate then, conditioning on
Λ , the distribution of N is that of a Poisson process with cumulative intensity Λ . The benefit
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of randomness in the cumulative intensity lies in the fact that the statistician can take into ac-
count auxiliary informations, thus leading to a better model. For general references, we refer
the reader to the monographies by Cox and Isham (1980), Karr (1991) and Kingman (1993).

In actuarial sciences and risk theory for instance, the number of claims in the risk model
may be represented by a Cox process. In this area, the central quantity is the ruin probability,
that is the probability that the surplus of the insurer is below zero at some time (see e.g., Björk
and Grandell, 1998; Grandell, 1991; Schmidili, 1996). Cox process also appears in biophysics
and physical chemistry (see e.g., Kou et al., 2005; Kou, 2008; Zhang and Kou, 2010). In these
fields, experimental data consist of photon arrival times with the arrival rate depending on the
stochastic dynamics of the system under study (for example, the active and inactive states of an
enzyme can have different photon emission intensities); by analyzing the photon arrival data,
one aims to learn the system’s biological properties. Cox process data arise in neuroscience,
to analyse the form of neural spike trains, defined as a chain of action potentials emitted by a
single neuron over a period of time (see e.g., Gerstner and Kistler, 2002; Reynaud-Bourret et
al., 2013). Finally mention astrophysics as another area where Cox process data often occur
(see e.g., Scargle, 1998; Carroll and Ostlie, 2007).

In general, it is tempting to associate to a model numerous covariates, and this possibly
wrongly. With this kind of abuse, one may use a Cox process model though a Poisson process
model is satisfactory. In this paper, we elaborate a nonparametric test statistic to highlight the
Poisson nature of a Cox process. More precisely, based on i.i.d. copies of N, we construct a non-
parametric test statistic for H0: N is a Poisson process vs H1: N is not a Poisson process. Among
the various possibilities to elaborate a test statistic devoted to this problem, one could estimate
both functions t 7→ E[Nt |Λ ] and t 7→ ENt and test whether these functions are equal. However,
this approach suffers from two main drawbacks, that is curse of dimensionality (whenever Λ

takes values in a high-dimensional space) and knowledge a priori on Λ . Another approach is to
test whether time-jumps of N are Poisson time-jumps; in this direction, we refer the reader to
the paper by Reynaud-Bourret et al. (2014), in which a modified Kolmogorov-Smirnov statistic
is used.

We elaborate and study a test statistic based on the observation that a Cox process is a
Poisson process if, and only if its mean and variance function are equal (see beginning of Section
2). As we shall see, this approach leads to a very simple test, easily implementable and does
not require to have any information on a covariate. Moreover, our test can be used to test if a
counting process is Poissonian versus an overdispersed counting process (see Theorem 2.1, the
power of our test is computed under a local alternative which does not use a Cox representation
of the process). But as Cox processes form a natural class of overdispersed counting processes
and the non dispersion of the countings characterizes the Poisson processes among the Cox
processes, we keep this alternative hypothesis to formulate our test.

Our test can be seen as a functional version of the classical test of overdispersion used for
testing the Poisson distribution of a sequence of countings. See for instance Rao and Chakravarti
(1956) or Bhning (1994) for some overdispersion tests based on a comparison between the
sample mean and the sample variance of counting sequences. Such overdispersion tests are
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widely used in actuarial science in the study of claims counts and as a goodness of fit test for
Poisson regression models. See for instance Denuit et al. (2007)

2 Test statistic
Let T > 0 and N = (Nt)t∈[0,T ] be a Cox process with stochastic cumulative intensity Λ =

(Λ(t))t∈[0,T ], and such that EN4
T < ∞. We let m and σ2 the mean and variance functions of

N, i.e. for all t ∈ [0,T ] :
m(t) = ENt and σ

2(t) = var(Nt).

Recall that for all t ∈ [0,T ] (see p. 66 in the book by Kingman, 2002) :

σ
2(t) = m(t)+var(E[Nt |Λ ]).

Hence, σ2(t)≥m(t) that is, each Nt is over-dispersed. Moreover, if m=σ2, then E[Nt |Λ ] =ENt
for all t ∈ [0,T ], so that N is a Poisson process. As a consequence, N is a Poisson process if,
and only if m = σ2. This observation is the key for the construction of the test statistic, insofar
the problem can be written as follows :

H0 : σ
2 = m vs H1 : ∃t ≤ T with σ

2(t)> m(t).

From now on, we let the data N(1), · · · ,N(n) to be independent copies of N. By above,
natural test statistics are based on the stochastic process σ̂2− m̂ = (σ̂2(t)− m̂(t))t≤T , where m̂
and σ̂2 are the empirical counterparts of m and σ2 :

m̂(t) =
1
n

n

∑
i=1

N(i)
t and σ̂

2(t) =
1

n−1

n

∑
i=1

(
N(i)

t − m̂(t)
)2
.

In the next result, convergence in distribution of stochastic processes is intended with respect
to the Skorokhod topology (see Chapter VI in the book by Jacod and Shiryaev, 2003).

Theorem 2.1. Let B = (Bt)t∈R+ be a standard brownian motion on the real line. Under H0,
σ̂2− m̂ is a martingale and

√
n
(
σ̂

2− m̂
) (law)−→

(
B2m(t)2

)
t≤T .

Among the various possibilities of test statistics induced by σ̂2− m̂, we concentrate on

Ŝ1 = sup
t≤T

(
σ̂

2(t)− m̂(t)
)
, and Ŝ2 =

∫ T

0

(
σ̂

2(t)− m̂(t)
)
dt.

In particular, they are chosen so as to respect the unilateral nature of the problem (due to the
fact that the alternative hypothesis may be written H1 : σ2(t)> m(t) for some t ≤ T ).

We now present the asymptotic properties of Ŝ1 and Ŝ2.
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Corollary 2.2. Let M̂2(T ) =
∫ T

0 (T − t)m̂(t)2dt.
(i) Under H0,

√
n

Ŝ1

m̂(T )
(law)−→ |N (0,2)|, and

√
n

Ŝ2

M̂(T )
(law)−→ N (0,4).

(ii) Under H1,
√

n
Ŝ1

m̂(T )
prob.−→ +∞, and

√
n

Ŝ2

M̂(T )
prob.−→ +∞

Hence, the test statistics Ŝ1/m̂(T ) and Ŝ2/M̂(T ) define asymptotic tests with maximal power
and the rejection regions for tests of level α ∈]0,1[ are

{ Ŝ1

m̂(T )
≥
√

2
n

q1−α/2

}
and

{ Ŝ2

M̂(T )
≥ 2√

n
q1−α

}
, (2.1)

where for each β ∈]0,1[, qβ is the N (0,1)-quantile of order β .
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