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Résumé. Dans les études cliniques les patients sont généralement surveillés par des
biomarqueurs mesurés de façon répétée. Dans cette population, il est souvent intéressant
de prédire des probabilités cumulées individuelles d’événements tels que la rechute clinique
ou la mort, à partir des informations individuelles collectées jusqu’au temps de prédiction.
Pour calculer ces prédictions dynamiques individuelles, deux principales approches ont
été proposées. L’approche de modélisation conjointe modélise simultanément le processus
longitudinal (mesures répétées de biomarqueurs) et le processus de survie (données de
temps d’événement) en les reliant à l’aide d’une fonction d’une structure latente commune.
En revanche, l’approche landmarking cherche à ajuster des modèles de survie standards
tenant compte des fonctions des prédictions de biomarqueurs, en ne considérant que le
sous-échantillon des patients à risque au moment de la prédiction. Ces approches diffèrent
notamment dans l’information utilisée, les hypothèses du modèle et la complexité des
procédures computationnelles. Motivés par l’exemple de la prédiction de deux causes
concurrentes de progression du cancer de la prostate à partir de l’histoire des PSA, nous
avons mené une étude de simulation approfondie permettant d’évaluer et de comparer ces
deux approches. Les prédictions dynamiques individuelles dérivées des modèles conjoints
et des modèles landmarks ont été spécifiquement comparées en termes de précision de
prédiction et de robustesse aux hypothèses du modèle.
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Abstract. In clinical studies patients are usually monitored by repeatedly measuring
biomarkers. In this population it is often of interest to predict subject-specific cumulative
probabilities of event such as clinical recurrence or death from the individual information
collected until the time of prediction. To compute these individual dynamic predictions,
two main approaches have been proposed. The joint modelling approach simultaneously
models the longitudinal process (repeated measures of biomarkers) and the survival pro-
cess (time-to-event data) by linking them using a function of a common latent structure.
In contrast, the landmarking approach fits standard survival models adjusted for func-
tions of the biomarkers predictions by considering only the subsample of patients at risk
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at the time of prediction. These approaches notably differ in the used information, the
model assumptions and the complexity of the computational procedures. Motivated by
the example of the prediction of two competing causes of prostate cancer progression from
the PSA history, we conducted an extensive simulation study to assess and compare these
two approaches. The individual dynamic predictions derived from joint models and land-
mark models were specifically compared in terms of accuracy of prediction and robustness
to the model hypotheses.

Keywords. Dynamic predictions, Joint modelling, Landmarking, Proportional haz-
ards, Pseudo-observations.

1 Context

In patients with localized prostate cancer and treated by radiotherapy, the Prostate-
Specific Antigen (PSA) is measured routinely, and we are interested in two causes of
events: disease recurrence and death. For each subject, strategies of treatment can be
adapted according to his up-to-date individualized dynamic predictions of each type of
progression.

In this manuscript, we consider the prostate cancer example with for each subject i,
Xi the covariates measured at baseline, Yi the repeated measurements of the longitudinal
marker (PSA), and K = 2 possible causes of competing risk events.

To compute individualized dynamic predictions, two notions of time are of interest:
the horizon time w, which is the prediction window, and the landmark time s, that denotes
the time from which the prediction is made. For each subject i, we observe two processes:
Yi(s), the history of the marker until the landmark time s, and (Ti, δi) the couple of
observed time-to-event and cause of event respectively. In practice, we are interested in
the individual cumulative probability of the event of cause k between the times s and
s+ w. This is referred to as the landmark specific cumulative incidence of cause k:

πk
i (s, w) = Pr(T ∗

i ≤ s+ w, δi = k|T ∗
i > s,Yi(s), Xi),

where T ∗
i = min({T ∗

i,k}k) is the true earlier event time for subject i, with k = 1, . . . , K.

2 Dynamic prediction models

2.1 Joint modelling

The idea of the joint modelling is to link the longitudinal and survival processes according
to a function of a shared latent structure. In our case, the latent structure is the random
effects, and the joint model is then decomposed into two sub-models: a linear mixed
model (for the repeated measures of PSA) and a cause-specific proportional hazard (CS
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PH) model (for the competing event times). The function of the shared random effects,
which is possibly multivariate and called dependence function, is included in the CS PH
model as prognostic factor(s). Examples of functions are the true current level and/or
the true current slope of the marker.

The likelihood function exploits the independence between the longitudinal process
and the survival process conditionally to the random effects. The inference thus requires
the computation of an integral over the random effects (in addition to the integrals over
time) for which hard computational numerical integrations are needed.

Once the model is estimated on a learning sample, the vector of parameters θ̂ is
deduced, and we are able to compute the estimated cumulative incidences for any new
subject. Note that the computation of these conditional probabilities is also complex
because it involves integrals over the random effects and integrals over time for which
numerical integrations are also required.

2.2 Landmarking

To avoid the hard computational procedures of the joint modelling and reduce the possible
bias linked to the proportional hazards assumption of the CS PH model, the landmark
approach has been proposed. The idea is to fit standard survival models on the subsample
of subjects at risk at the landmark time s.

These survival models are adjusted for the standard prognostic factors Xi and dynam-
ics of the marker such as the last observed value of the marker (one talks about “naive”
landmark model) or predictions from the mixed model at the landmark time s (one talks
about “two-stage” landmark model). These predictions may include any function of the
marker at the landmark time s, for example the predicted value or/and slope of the
marker.

Cause-specific proportional hazards models

The landmark CS PH models only consider the events that occurred between s and s+w
to reduce the possible bias linked to the PH assumption. The events after s + w are
censored in s+w. It is referred to as left truncation in s and administrative censoring in
s+ w.

Once the landmark CS PH model is estimated and the vector of parameters θ̂ is
obtained on a learning sample, the cumulative incidences can be computed for any new
subject. Note that these conditional probabilities require integrals over time. The Aalen-
Johansen estimator may be used to avoid the numerical integration.

Dynamic pseudo-observations

The cause-specific proportional hazards models are based on the cause-specific hazards.
Thus the computation of cumulative incidences require integrals over time. The idea of
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the dynamic pseudo-observations approach is to directly model the conditional probability
of event. One talks about direct estimation.

The idea is to select the subjects at risk at time s and regress the expectation of
µk
i,s,w = 1(T ∗

i ≤ s + w, δi = k) according to covariates using generalized linear models
with a specified link function and a GEE approach. In practice, µk

i,s,w is not available for

censored subjects. Thus, one uses the dynamic pseudo-observation µ̂k
i,s,w = NsF̂

k(s, w)−
(Ns − 1)F̂ k

(−i)(s, w) where Ns is the number of subjects at risk at time s and F̂ k(s, w) is

the non-parametric estimator of πk(s, w).
After the estimation of the regression on a learning sample, the predicted conditional

cumulative incidence can be directly computed for any new subject by handling the inverse
of the link function.

3 Comparison

As previously described, the joint model, the landmark CS PH model and the dynamic
pseudo-observations approach differ notably in the complexity of the estimation procedure
and the information used. The objective of this work was to compare the predictive
abilities of the joint modelling and the landmarking according to several landmark time
points and horizons in an extensive simulation study. We considered a “well-specified”
case (the term “well-specified” is only verified for the joint model) as well as scenarios
in which data were generated according to several misspecifications of the joint model in
order to verify the models robustness:

• Violation of the PH assumption,

• Misspecification of the dependence function,

• Misspecification of the longitudinal sub-model.

For each scenario and each learning sample r = 1, . . . , R, we used the joint and land-
mark models. For a given landmark time s and a given horizon w, predictions were
computed on the same subjects i = 1, . . . , Ns, where Ns is the number of subjects at risk
at time s. Because this is a simulation study, the true cumulative incidence πk,r

i (s, w; θ)

is known. It is also estimated for each method with π̂k,r
i (s, w; θ̂).

To compare the true and the predicted conditional probabilities, a first tool is the dif-
ference of mean absolute percentage error which directly compares the bias of prediction.
It is defined as:

MAPEk,r
(1)(s, w)−MAPEk,r

(2)(s, w), where

MAPEk,r
(1)(s, w) =

Ns∑
i=1

1

Ns

∣∣∣πk,r
i (s, w; θ)− π̂k,r,(1)

i (s, w; θ̂(1))
∣∣∣

πk,r
i (s, w; θ)
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for the rth replicate. We are able to use graphical plots such as boxplots to see the
distribution of this estimator over the R replicates.

A second tool for comparison considers the 95% coverage rate of cumulative incidence
using a Monte-Carlo technique. Boxplots are also used to describe the estimator distri-
bution over the R replicates.

4 Expected results

Individualized predictions may be difficult to compute when we are confronted to a dy-
namic information such as repeated measurements of biomarkers. Two main approaches
have been developed to estimate these individualized dynamic predictions. The joint
model explores the complete relationship between the longitudinal process and the sur-
vival process. However the PH assumption and the hard computational inference may
be obstacles to the use of this model. The landmark CS PH models have been proposed
in this sense, by selecting only the subjects at risk at the landmark time point and by
censoring administratively the events at the end of the prediction window. Observed or
predicted markers dynamics are introduced. Such models are easy to use in practice and
reduce the possible bias linked to the PH assumption, but do not explore the complete
correlation between markers and time-to-event data and may give less efficient estima-
tors. The dynamic pseudo-observations are freed from the PH assumption, consider a
more complete information and ensure a direct estimation of the probabilities. But they
assume a specification of the link function, incorporate also a function of the biomarkers
histories, and may give less efficient estimators than the joint model.

The simulation study performed over 500 replicates should bring major informations
on the pros and cons of each method to provide dynamic individual predictions.
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