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Résumé. Nous proposons un test portmanteau robuste et général pour les mod-
èles des séries temporelles à valeurs entières. Le test représente un outil �able pour
évaluer l'adéquation de l'ajustement pour des classes larges et importantes des mod-
èles. Par exemple, les modèles INGARCH(p, q), les modèles log-linéaire(1,1), les modèles
non-linéaires(1,1) avec diverses distributions conditionnelles et les modèles INAR(p) avec
di�érentes distributions marginales des innovations. La distribution asymptotique de la
statistique est dérivée et ses propriétés à distance �nie sont étudiées par des simulations
de Monte Carlo.

Mots-clés. Test Portmanteau, Test de validation, Modèles INGARCH(p,q), Mod-
èles log-linéaire(1,1), Modèles non-linéaires(1,1), Modèles INAR(p), L'estimateur de quasi
maximum de vraisemblance de Poisson, Séries temporelles à valeurs entières.

Abstract. We propose a robust and general goodness-of-�t test for the count time se-
ries models. The test represents a very useful tool for checking the adequacy of �t for wide
and important classes of models. For example, the INGARCH(p,q), the log-linear(1,1),
the non-linear(1,1) models with diverse conditional distributions and the INAR(p) mod-
els with several distributional cases of the innovations. The asymptotic distribution of
the statistic is derived and its �nite sample properties are studied through Monte Carlo
simulations.

Keywords. Portmanteau, Goodness-of-Fit, INGARCH models, INAR models, Log-
linear models, Non-linear models, Poisson quasi-maximum likelihood estimator, Time
series of counts.

1 Introduction

The portmanteau test is considered as one of the most important tools for evaluating the
goodness-of-�t in the context of the time series analysis. Firstly, this test based on the
sum of the squared autocorrelation functions of the residuals, was limited to be used when
the residuals are independent and identically distributed (iid) ( see Box and Pierce, 1970
and Ljung and Box, 1978 for more details). Lot of modi�cations have been proposed in the
literature to make this test able to treat with more general residual cases (see e.g Francq
et al. (2005) and the references therein). For the time series of counts which found,
in the recent years, a remarkable interest, the goodness-of-�t tests still less developed.
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However, several important breakthroughs have been achieved in this �eld. For instance,
Neumann et al. (2011) proposed to use the conditional equi-dispersion assumption of the
Poisson INGARCH(p,q) model for testing the adequacy of the speci�cation of the intensity
process. In addition, Fokianos et al. (2013) have been studied a non parametric goodness-
of-�t test for the Poisson INGARCH(p,q) models. Recently, Meintanis and Karlis (2014)
propsed a goodness-of-�t test for the innovation distribution of the Poisson INAR(1)
model. Schweer (2016) has been introduced a more general test in which the empirical
joint probability generating function is considered for testing the adequacy of wide class of
count time series models, but this test depends on arbitrary parameter. In addition, the
generalization of the methodology of this test to be used for higher-order models seems
quite challenging. In this contribution, the adopted approach is simpler and much more
general than the previous mentioned tests. Where, under some conditions, the test can be
used as a diagnostics checking tool for INGARCH(p,q), log-linear and non-linear models
with large variety of exponential discrete conditional distributions having non negative
integer-valued supports. Moreover, the test can also be used to evaluate the adequacy
of �t for the INAR(p) model for several distributional cases of the innovations. This
goodness-of-�t test is based on the residuals autocovariances obtained after estimating the
model using Poisson quasi maximum likelihood estimator (PQMLE) studied by Ahmad
and Francq (2015).

2 Model and assumptions

Assume that {Xt ∈ N} is a count time series, such that

E (Xt | Ft−1) = λt(θ0) = λ(Xt−1, Xt−2, . . . ; θ0), (2.1)

where Ft−1 denotes the σ−�eld generated by (Xu, u < t),

λ is a measurable function valued in (ω,+∞) for some ω > 0 (2.2)

and θ0 is an unknown parameter belonging to some parameter space Θ ⊂ Rd. We assume
also that the fourth-order moment of the marginal distribution of Xt exists

EX4
t <∞. (2.3)

We de�ne the residual as follows

εt(θ0) = Xt − λt(θ0). (2.4)

If the conditional mean is correctly speci�ed, under the stationarity assumption, one can
show that εt(θ0) is uncorrelated white noise sequence, where

E(εt(θ0)) = E (E (Xt − λt(θ0)|Ft−1)) = 0, var(εt(θ0)) = E (var (Xt|Ft−1))
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and, for h > 0, we have

cov(εt(θ0)εt+h(θ0)) = E (εt(θ0)E (εt+h(θ0)|Ft+h−1)) = 0.

The above formulation can accommodate large variety of count time series models. For
example, the INGARCH(p,q) models (see e.g Heinen, 2003, Ferland et al., 2006, Zhu,
2012 and Christou and Fokianos, 2014), the log-linear model (see Fokianos and Tjøstheim,
2011), the non-linear model (see Fokianos and Tjøstheim, 2012) and the INAR(p) models
(see e.g Alzaid and Al-Osh, 1990). According to Ahmad and Francq (2015), these models
can be consistently estimated by Poisson Quasi Maximum Likelihood Estimator (PQMLE)
which is de�ned as any measurable solution of

θ̂n = arg max
θ∈Θ

L̃n(θ), L̃n(θ) =
1

n

n∑
t=s+1

˜̀
t(θ), (2.5)

where ˜̀t(θ) = −λ̃t(θ) + Xt log λ̃t(θ), λ̃t(θ) is obtained by setting to some integer x0 the
unknown initial values X0, X1, ... involved in λt(θ). This value x0 can either be a �xed
integer, for instance, x0 = 0, or a value depending on θ, or a value depending on the
observations. The integer s is asymptotically unimportant, but it can a�ect the �nite
sample behaviour of the PQMLE by reducing the impact of the initial value x0. Under
some regularity conditions, PQMLE is consistent and

√
n(θ̂n−θ0) is asymptotically normal

with mean 0 and covariance matrix Σθ := J−1IJ−1, where

J = E
1

λt(θ0)

∂λt(θ0)

∂θ

∂λt(θ0)

∂θ′
, I = E

var(Xt|Ft−1)

λ2
t (θ0)

∂λt(θ0)

∂θ

∂λt(θ0)

∂θ′
. (2.6)

3 Portmanteau test

As mentioned in the introduction, the goodness-of-�t test is based on the residuals auto-
covariances. Firstly, the residuals considered in the test are de�ned as follows

ε̃t(θ̂n) = Xt − λ̃t(θ̂n).

We denote by γ̂m = (γ̂(1), .., γ̂(m))
′ the vector of residuals autocovariance functions, where,

for m < n and h ∈ {1, ..,m}, its elements are given by

γ̂(h) =
1

n

n∑
t=h+1

ε̃t(θ̂n)ε̃t−h(θ̂n).

De�ne the m ×m matrix Σ̂γm , whose the elements for (h, l) ∈ {1, ..,m} are given as
follows

Σ̂γm(h, l) =
1

n

n∑
t=max(h,l)+1

ε̃2t (θ̂n)ε̃t−h(θ̂n)ε̃t−l(θ̂n).
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Let Σ̂θ a consistent estimator of the matrix Σθ de�ned in Section 2

Σ̂θ = Ĵ−1Î Ĵ−1,

where

Ĵ =
1

n

n∑
t=s+1

1

λ̃t(θ̂n)

∂λ̃t(θ̂n)

∂θ

∂λ̃t(θ̂n)

∂θ′
and Î =

1

n

n∑
t=s+1

(
Xt

λ̃t(θ̂n)
− 1

)2
∂λ̃t(θ̂n)

∂θ

∂λ̃t(θ̂n)

∂θ′
.

Let d denotes the number of parameters of the model, we de�ne the d ×m matrices
Ĉm and Σ̂θ̂n,γm

whose the (k, h)th elements, for 1 ≤ k ≤ d and 1 ≤ h ≤ m, are obtained
respectively by

Ĉm(k, h) = − 1

n

n∑
t=h+1

∂λ̃t(θ̂n)

∂θk
ε̃t−h(θ̂n)

and

Σ̂θ̂n,γm
(k, h) = Ĵ−1 1

n

n∑
t=h+1

∂λ̃t(θ̂n)

∂θk

ε̃2t (θ̂n)

λ̃t(θ̂n)
ε̃t−h(θ̂n).

Theorem 3.1 Under the assumption (2.3) and the other regularity conditions required
for the PQMLE (see Ahmad and Francq, 2015), we have

nγ̂′mΣ̂−1
γ̂m
γ̂m

L→ χ2
m,

where
Σ̂γ̂m = Σ̂γm + Ĉ ′mΣθĈm + Ĉ ′mΣ̂θ̂n,γm

+ Σ̂′
θ̂n,γm

Ĉm.

The adequacy of model is rejected at the asymptotic level α when

nγ̂′mΣ̂−1
γ̂m
γ̂m > χ2

m(1− α).

4 Example of the Monte Carlo simulation results

To examine the �nite sample behaviour of the test de�ned in Theorem 3.1, we report a
Monte Carlo simulation with 1000 independent replications. We evaluate the size and the
power of the test for the INGARCH(p,q) with three conditional distributions: Poisson
P(λt), negative binomial NB(pt, ν) and double-Poisson DP(λt, γ) distributions. The IN-
GARCH(p,q) models are de�ned by assuming that the conditional mean take the following
general linear representation

E (Xt | Ft−1) = λt(θ0) = ω0 +

q∑
i=1

α0iXt−i +

p∑
j=1

β0jλt−j(θ0), (4.1)
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where ω0 > 0, 0 ≤ α0i < 1 (i = 1, .., q) and 0 ≤ β0j < 1 (j = 1, .., p). The models are
estimated using PQMLE. For each replication, we carried out the portmanteau test for
evaluate the adequacy of the �tted models at asymptotic level α = 5%. In view of Table
1, we can note that the empirical sizes for all the models are satisfactorily close to the
theoretical nominal level, especially when the sample size is large. Moreover, the results
summarized in Table 2 show that the proposed test achieves good power even when the
sample size is relatively small.

Table 1: Size of test for the INGARCH model
INGARCH(1,1)

ω0 = 2, α0 = 0.3, β0 = 0.6 df = m
m=4 m=12 m=20

n P(λt) NB(pt, 6) DP(λt, 2) P(λt) NB(pt, 6) DP(λt, 2) P(λt) NB(pt, 6) DP(λt, 2)
α = 5%

500 5.1 5.5 4.9 3.2 3.7 4.3 3.1 3.2 3.9
1000 4.2 5.2 4.2 4.3 4.4 5.5 4.3 3.5 4.4
4000 4.7 6.2 4.9 5.1 5.7 5.4 5 4.5 3.9

Table 2: Power of test for the INGARCH model
INGARCH(1,1) vs INGARCH(1,2)

ω0 = 2, α01 = 0.4, α02 = 0.3, β0 = 0.2 df = m
m=4 m=12 m=20

n P(λt) NB(pt, 6) DP(λt, 2) P(λt) NB(pt, 6) DP(λt, 2) P(λt) NB(pt, 6) DP(λt, 2)
α = 5%

500 69.3 31.6 74.3 48.4 18.3 50.6 33.9 12.1 37.3
1000 96.4 50.6 96.9 87 34.7 88.3 78.8 24.4 80.5
4000 100 90.9 100 100 85 100 100 80.4 100
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