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Résumé. La classification non-supervisée des données fonctionnelle qualitatives représentées
par des trajectoires d’un processus de sauts est considérée. Nous proposons un algorithme
EM pour estimer un mélange de processus de Markov. Une étude de simulation et une
application sur des données hospitalières sont présentées.
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Abstract. Categorical functional data represented by paths of a stochastic jump
process with continuous time are considered for clustering. For Markov models we propose
an EM algorithm to estimate a mixture of Markov processes. A simulation study as well
as a real application on hospital stays will be presented.
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1 Introduction

Most literature devoted to functional data considers data as sample paths of a real-valued
stochastic process, X = {Xt, t ∈ T }, Xt ∈ Rp, p ≥ 1 where T is some continuous set.
Among a considerable record of papers on the subject, the monographs of Ramsay and
Silverman (2002, 2005) and Ferraty and Vieu (2006) still remain references presenting the
main methodologies for visualisation, denoising, classification and regression when dealing
with functional data represented by real-valued functions.

We consider the case where the underlying stochastic model generating the data is
a continuous-time stochastic process X = {Xt, t ∈ T } such that for all t ∈ T , Xt is a
categorical random variable rather than a real-valued one.

Let (Ω,A,P) be a probability space, S = {s1, . . . , sm}, m ≥ 2, be a set of m states
and

X = {Xt ; Xt : Ω −→ S, t ∈ T } (1)

be a family of categorical random variables indexed by T . Thus, a path of X is a se-
quence of states sij and times points ti of transitions from one state to another one :
{(si1 , t1), (si2, t2), . . .}, with sij ∈ S and ti ∈ T .
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We call the sample paths of the process (1) categorical functional data. The Figure 1
presents graphically scalar and categorical functional data.
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Figure 1: Examples of categorical (left) and scalar (right) functional data.

To the best of our knowledge, and quite surprisingly, there is no recent researches devoted
to this type of functional data despite its ability to model real situations in different fields
of applications: health and medicine (status of a patient over time), economy (status of
the market), sociology (evolution of social status), and so on. As a start point in research
on this topic we consider the works of Boumaza(1980), Deville (1982), Deville and Saporta
(1983), Saporta (1981). These works are devoted to the extension of factorial techniques
(canonic and multiple correspondances analysis) towards functional data. Applications
of these techniques are presented in Heijden (1997) for analysing career data and in
Preda (1998) for studying spectral properties of the transition probability matrix of a the
stationary Markovian jump process with continuous time.

In this work we present a model-based methodology of clustering categorical functional
data. Instead of the classical setting considering a fixed length of the paths of X , i.e. the
process is observed over a fixed length of time T = [0, T ], T > 0, we consider that the
process X has an absorbing state and thus, we allow sample paths of different lengths. In
the Markovian framework, based on the likelihood function, we derive an EM algorithme
for clustering categorical functional data. A simulation study and an application on
clustering medical discharge letters according to their status of dictating, type-writing
and delivery to the end-user (patient or medicine) are presented.
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