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Résumé. Certains problèmes de classification présentent des relaxations continues
obtenues par optimisation semi-définie positive et reconnues pour leur efficacité envers ces
problèmes autrement insolubles. Dans un article récent, Guédon et Vershynin décrivent
un nouvel angle d’attaque pour un problème voisin de détection de communautés, basé
là encore sur un programme SDP. L’analyse de leur technique, reposant sur une inégalité
de Grothendieck, montre à quel point elle gère efficacement le problème. Dans cet article,
nous transposons cette méthode à la classification de données issues d’un modèle de
mélange de gaussiennes, et nous intéressons aux garanties théoriques apportées par cette
adaptation.
Mots-clés. Partitionnement de données, Modèle de mélanges gaussiens, Optimisation
SDP, Relaxation continue.

Abstract. Semidefinite programming relaxations are known to deal efficiently with
otherwise intractable clustering problems. In a recent article, Guédon and Vershynin
devise a new way to tackle community detection, a related problem, based on the opti-
mization of a semidefinite program. Their analysis relies on a Grothendieck inequality
and the strategy turns out to be very efficient. In this paper, we adapt this strategy to
a gaussian mixture clustering problem and investigate what theorical guarantees it leads
to.
Keywords. Data clustering, Gaussian mixture model, Semidefinite programming, Ap-
proximation algorithms.

1 Introduction

Unsupervised clustering is a key problem in modern data analysis which has to be solved
efficiently. Traditional approaches to clustering are model based (e.g. Gaussian mixture
models) or nonparametric. For mixture models, the algorithm of choice has long been
the EM algorithm by Dempster et al. [7], see the monograph by McLachlan and Peel [11]
for an overview of finite mixture models. Nonparametric algorithms such as K-means,
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K-means ++ and generalizations have been used extensively in computer science; see
Jain [10] for a review. The main drawback of these standard approaches is that the
minimization problems underlying the various procedures are not convex. Even worse,
the log-likelihood function of e.g. Gaussian mixture model exhibits degenerate behavior,
see Biernacki and Chrétien [2]. As a result, one can never certify that such algorithms
have converged to an interesting stationary point and the popularity of such methods
seems to be based on their satisfactory average practical performance.

Recently, very interesting results have appeared for the closely related problem of
community detection based on the stochastic block model, see Abbe et al. [1], Heimlicher
et al. [9] and Mossel et al. [12]. In this model, a random graph is constructed by
partitioning the set of vertices V into K clusters C1, . . . , CK and by setting an edge between
vertices v and v1 with probability pkk1 if v P Ck and v1 P Ck1 . All edges are independent
and the probabilities of edges depends only on the clusters structure. It is assumed that
this probability is larger within clusters, i.e.

p � min
1¤k¤K

pkk ¡ max
1¤k�k1¤K

pkk1 � q. (1)

This corresponds to the intuitive notion of cluster in graph theory where clusters have a
higher edge density. Guédon and Vershynin [8] proved that the problem of recovering the
clusters from the random graph can be addressed via Semi-Definite Programming (SDP)
with an explicit control of the error rate. Although not explicitly studied in their paper,
the SDP can be solved efficiently thanks to a general theory, see Boyd and Vandenberghe
[4].

The mathematical framework for Gaussian mixture based clustering is the following.
We assume that we observe a data set x1, . . . , xn P Rd over a population of size n. The
population is partitioned into K clusters C1, . . . , CK of size n1, . . . , nK respectively, i.e.
n � n1 � � � � � nK . We assume the observations xi are independent with

xi � N pµk,Σkq if i P Ck (2)

with µk P Rd the cluster mean and Σk P Rd�d the cluster covariance matrix. The clustering
problem aims at recovering the clusters Ck, 1 ¤ k ¤ K, based on the data xi, 1 ¤
i ¤ n, only. For each i � 1, . . . , n, we will denote by ki the index of the cluster to
which i belongs. The notation i � j will mean that i and j belong to the same cluster.
Note that our framework slightly differs from the usual setting for Gaussian unmixing
where one usually assume that the data set is made of independent observations from the
mixture of Gaussian distribution and the cluster size have random sizes with multinomial
distributions. The parameters of the Gaussian mixtures are to be estimated and the most
popular approach is based on maximum likelihood estimation via the EM algorithm [7]
and its variants like CEM, see Céleux and Govaert [6]. The likelihood may behave quite
badly and exhibit degenerate behavior, making optimization via EM not always reliable,
see [2]. Once all the parameters of the Gaussian mixture are estimated, the probability
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that an observation belongs to a cluster are computed. Maximizing these probabilities
results in a partition of the space that provides the clustering.

The goal of the present paper is to propose a complete different approach where we
do not estimate the Gaussian mixture parameters but rather directly try to recover the
different clusters via the solution of a Semi-Definite Programming (SDP) problem. We
present how the method of Guédon and Vershynin can be adapted to the problem of
Gaussian clustering with a theoretical upper bound for the misclassification rate. This
adaptation is non trivial because, unlike the stochastic block model, the affinity matrix
associated to Gaussian clustering does not have independent entries. Thus we need to
introduce concentration inequalities for Gaussian measures, see e.g. the monograph by
Boucheron et al. [3].

2 Main result

Inspired by the analysis of community detection in stochastic block model by Vershynin
and Guédon [8], we propose and study a Semi-definite Program associated with Gaussian
clustering. Based on the data set x1, . . . , xn, we construct an affinity matrix A by

A � �fp}xi � xj}2q
�
1¤i,j¤n

(3)

where }�}2 denotes the Euclidean norm on Rd and f : r0,�8q Ñ r0, 1s an affinity function.
A popular choice is the Gaussian affinity

fphq � e�ph{h0q2 , h ¥ 0, (4)

and other possibilities are

fphq � e�ph{h0qa , fphq � p1 � ph{h0qq�a, fphq � p1 � eh{h0q�a � � �
Before stating the Semi-Definite Program, we introduce some matrix notations. The

usual scalar product between matricesA,B P Rn�n is denoted by xA,By � °1¤i,j¤nAijBij.
The notations 1n P Rn and 1n�n P Rn�n stand for the vector and matrices with all en-
tries equal to 1. For a symmetric matrix Z P Rn�n, the notation Z © 0 means that the
quadratic form associated to Z is non-negative while the notation Z ¥ 0 means that all
the entries of Z are non-negative.

With these notations, the Semi-Definite Program reads

maximize xA,Zy subject to Z P Mopt (5)

with Mopt the set of symmetric matrices Z P Rn�n such that$''&''%
Z © 0
Z ¥ 0
diagpZq � 1n

xZ, 1n�ny � λ0

. (6)
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Let us provide some intuitions for motivating the SDP problem (5). Note that each
Z P Mopt has entries in r0, 1s with constant sum equal to λ0. The SDP procedure will
distribute the mass λ0 and assign more mass to entries Zij corresponding to large values
of the affinity Aij � fp}xj � xi}2q, i.e. pairs of close points xi, xj. This mass distribution
must respect symmetry and the constraint Z © 0. For the analysis of the procedure, the
main idea is that we want the solution pZ to be an approximation of Z̄, the cluster matrix
defined by Z̄i,j � 1 if i and j are in the same cluster, and 0 otherwise. The cluster matrix

has values in t0, 1u and belongs to Mopt for λ0 �
°K

k�1 n
2
k given by the cluster sizes, and

solves the alternative SDP problem

maximize xĀ, Zy subject to Z P Mopt (7)

where Ā � pEfp}xi � xj}2qq1¤i,j¤n denotes the expected affinity matrix.

Our main result provides a non asymptotic upper bound for the probability that pZ
differs from Z̄ in L1 distance.

Theorem 1 Consider the Gaussian mixture (2). Assume that the affinity function f is
`-Lipschitz and furthermore that

p � inf
i�j

Āi,j ¡ q � sup
i�j

Āi,j. (8)

Then, for all t ¡ t0 � 8
?

2 log 2KGσ`{pp� qq,

P
���� pZ � Z̄

���
1
¡ n2t

	
¤ 2 exp

�
�
�
t� t0
c


2

n

�
, c � 16

?
2KG`σ

p� q
, (9)

where KG � 1.7 denotes the Grothendieck constant and σ2 � 1
n

°K
k�1 nkρpΣkq with ρpΣkq

the largest eigenvalue of the covariance matrix Σk.

Theorem 1 has a simple consequence in terms of estimation error rate. After computingpZ, it is natural to estimate the cluster graph Z̄ by a random graph obtained by putting
an edge between vertices i and j if pZi,j ¡ 1{2 and no edge otherwise. Then the proportion
πn of errors in the prediction of the npn� 1q{2 edges is given by

πn :� 2

npn� 1q
¸

1¤i j¤n

|1t pZij¡1{2u � Z̄ij| ¤ 2

npn� 1q
��� pZ � Z̄

���
1
.

The following corollary provide a simple bound for the asymptotic error.

Corollary 1 We have almost surely

lim sup
nÑ8

n�2
��� pZ � Z̄

���
1
¤ t0 � 8

?
2 log 2KGσ`

p� q
.

In the case when the cluster means are pairwise different and fixed while the cluster
variances converge to 0, i.e. σ Ñ 0, it is easily seen that the right hand side of the above
inequality behaves as Opσq so that the error rate converges to 0. This reflects the fact
that when all clusters concentrates around their means, clustering becomes trivial.
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3 A concentration inequality

The proof is an adaptation of Vershynin and Guédon [8] whose two main ingredients are
the Grothendieck inequality together with a Bernstein concentration inequality. Grothendieck’s
inequality is used to compare the solutions pZ and Z̄ of the two SDP programs (5) and
(7). It implies that for every Z P Mopt,��xA,Zy � xĀ, Zy�� ¤ KG}A� Ā}8Ñ1.

where the `8–`1 norm of a matrix M P Rn�n is defined by

}M}8Ñ1 � sup
}u}8¤1

}Au}1 � max
uvPt�1,1un

ņ

i,j�1

uivjMi,j. (10)

The concentration inequality is used to estimate }A� Ā}8Ñ1 which quantifies the fluctu-
ation of the affinity matrix A around its mean Ā. Unlike in the stochastic block model,
the entries of the affinity matrix (3) are not independent and we can not use Bernstein
concentration inequality. We use Gaussian concentration instead and prove the following
concentration inequality.

Proposition 1 Consider the Gaussian mixture model (2) and assume the affinity func-
tion f is `-Lipschitz. Then, for any t ¡ 2

?
2 log 2 ` σ,

P
� ��A� Ā

��
8Ñ1

¡ t n2
	
¤ 2 exp

�
�
�
t� 2

?
2 log 2`σ

�2
32`2σ2

n

�
. (11)

4 Discussion

Solving SDP problems like (5) can be done efficiently, especially for low rank matrices,
using a Burer–Monteiro trick [5]. Note that the rank of Z is K. Modifying problem (5)
by adding a rank-K constrained makes therefore the problem efficienly solvable.

Once we have recovered a matrix Ẑ close enough to Z̄, we can use spectral pertur-
bation arguments to recover the clusters. The eigendecomposition of Z̄ consists of K
eigenvalues,

a|C1|, . . . ,
a|CK |, and the corresponding eigenvectors are 1{a|C1| 1C1 , . . . ,

1{a|CK | 1Ck , supposing that the cluster sizes are all different, which implies that every
nonzero eigenvalue have multiplicity equal to one.
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